

K.K.Wagh Institute of Engineering Education and Research, Nasik (Autonomous w.e.f. A.Y.2022-23) Details of Course Structure: S.Y. B.Tech Electrical Engineering

• Summary of Credits and Total Marks for U.G.Programme:

Semester	S.Y. B.Tech				
	Total Credits (TH+PR/OR/TU)	Total Marks			
III	22	750			
IV	20	700			
Total	42	1450			

• Description of various Courses:

Type of Course	Description	Type of Course	Description
ESC	Engineering Science Course - Workshop -	DCC	Department Core Course
LSC	Drawing- Fundamentals of different branches	DCC	Department Core Course
BSC	Basic Science Courses	DEC	Department Elective Course
LHSM	Liberal arts, Humanities, Social Sciences and	OEC	Open Elective Courses of other technical or
LUSM	Management courses	OEC	emerging areas /Courses designed by Industry
PSI	Project work, Seminar, Internship, PBL	IMC	Induction and Mandatory Courses
NC/AC	Non Credit Courses /Audit Courses	ASM	Additional Specialized / MOOCs

K.K.Wagh Institute of Engineering Education and Research, Nasik (Autonomous w.e.f. A.Y.2022-23) Details of Course Structure: S.Y. B.Tech Electrical Engineering

						SEM	-III									
Course Code	Course	Title of the Course	Title of the Course Teaching Sch Hrs./Weel			Evaluation Scheme and Marks					Credits					
Code	Туре		TH	TU	PR	INSEM	ENDSEM	CCE	TU/TW	PR	O R	Tota l	T H	T U	PR/O R	Total
SMH222001	BSC	Applied Mathematics- III	3	1		20	60	20	25			125	3	1		4
ELE222002	DCC	Analog and Digital Circuits	3			20	60	20				100	3			3
ELE222003	DCC	Measurement and Instrumentation	3			20	60	20				100	3			3
ELE222004	ESC	Electrical Engineering Materials	3			20	60	20				100	3			3
ELE222005	DCC	Transformer and Induction Machines	3			20	60	20				100	3			3
ELE222006	LHSM	Engineering Ethics	1						25			25	1			1
ELE222007	DCC	Measurement and Machines Lab			4				25	50		75			2	2
ELE222008	DCC	Analog and Digital Circuits Lab			2				25	25		50			1	1
ELE222009	ESC	Electrical Engineering Materials Lab			2				25		25	50			1	1
ELE222010	PSI	Python for Numerical Methods			2				25			25			1	1
		Total	16	1	10	100	300	100	150	75	25	750	16	1	5	22

K.K.Wagh Institute of Engineering Education and Research, Nasik (Autonomous w.e.f. A.Y.2022-23) Details of Course Structure: S.Y. B.Tech Electrical Engineering

						SEM	-IV									
Course Code	Course	Title of the Course		hing Sc rs./We			Evaluat	tion Sche	eme and Ma	arks				Cred	lits	
Code	Туре		ТН	TU	PR	INSEM	ENDSEM	CCE	TU/TW	PR	O R	Tota l	T H	T U	PR/O R	Total
ELE222011	DCC	Electrical Network Analysis	3			20	60	20				100	3			3
ELE222012	DCC	Microcontroller and Embedded Systems	3			20	60	20				100	3			3
ELE222013	DCC	Power Electronics	3			20	60	20				100	3			3
ELE222014	DCC	Power System Engineering	3			20	60	20				100	3			3
ELE222015	LHSM	Design Thinking for Academic Project	3			20	60	20				100	3			3
ELE222016	AC	Solar PV System	1													
ELE222017	DCC	Power Electronics Lab			4				25	50		75			2	2
ELE222018	DCC	Electrical Network Analysis Lab			2				25		25	50			1	1
ELE222019	DCC	Microcontroller and Embedded Systems Lab			2				25		25	50			1	1
ELE222020	PSI	Project Based Learning			2				25			25			1	1
		Total	16	0	10	100	300	100	100	50	50	700	15	0	5	20

		S. Y. B. Tech. 2 Semester: III (Electronic Line 1222601: Applied Mathe		
Teaching	Scheme:	Credit Scheme:	Examination Sche	me:
Theory:	3hrs/week	TH: 3	Continuous Comp	rehensive
	: 1hr/week	TU: 1	Evaluation:	20 Marks
			InSem Exam:	20 Marks
			EndSem Exam:	60 Marks
			Tutorial / Termwo	rk: 25 Marks
Prerequi	site Courses: - Higher Seco	ondary Mathematics		
Course C	Outcomes: On completion of	f the course, students wil	ll be able to—	
		Course Outcomes		Bloom's Level
CO1	Define L.T, F.T, Z.T, L.I	D.E, and Vector calculus,	and prove their	1-Remember
	Properties.			
CO2	Identify methods or technic	ques to solve particular to	ypes of	2-Understand
	mathematical problems.	1 · · · · · · · · · · · · · · · · · · ·	/ F	
CO3	Solve electrical engineering	no problems using appror	riate transforms	3- Apply
003	and techniques	ig problems using approp	Trace transforms	3 түргу
CO4	Analyze the Real life prob	lem using different mathe	ematical	4- Analyze
	transforms.			
		COURSE CONTEN	TS	
Unit I	Linear Differential Equati	ons with Constant	(8hrs+2hrs	CO1, CO2,
	Coefficient		Tutorial)	CO3,CO4
	h order with constant coeffi	cients, Method of Variati	ion of Parameters, Ca	uchy's and Legendre's
	taneous DE.			
Unit II	Laplace Tr	ansform	(8hrs+2hrs	CO1, CO2,
			Tutorial)	CO3,CO4
	ransform: Definition of LT			
	pecial functions viz. Periodic			I for Solving Linear
	l equations and Electric circ Fourier Tr			CO1 CO2
Unit	Fourier 1 r	ansiorm	(8hrs+2hrs	CO1, CO2,
III Fourier 7	Transform (FT): Complex	y avnonantial form of	Tutorial)	rier integral Complex
	al form of Fourier series, F	•		
-	Fourier Sine and Cosine to	_		_
tooth wave		and then mive	1505, rippiloution to	equale, mangalar, saw
Unit	Z Trans	form	(8hrs+2hrs	CO1, CO2,
IV			Tutorial)	CO3,CO4
Z - Trans	form (ZT): Introduction, I	Definition, Standard prop	· · · · · · · · · · · · · · · · · · ·	· '
inverses us	sing long division, residual		-	-
	f difference equations			
Unit V	Vector Ca	alculus	(8hrs+2hrs	CO1, CO2,
			Tutorial)	CO3,CO4

Physical interpretation of Vector differentiation, Vector differential operator, Gradient, Divergence and Curl, Directional derivative, Solenoidal, Irrigational, and Conservative fields, Scalar potential, and Vector identities. Line, Surface, and Volume integrals, Work-done, Green's Lemma, Gauss's Divergence theorem, Stoke's theorem, Applications to problems in Electromagnetic fields.

Text Books

- 1. B.V. Ramana, "Higher Engineering Mathematics", Tata McGraw-Hill.
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publication, Delhi.
- 3. Peter V. O'Neil, "Advanced Engineering Mathematics", Cengage Learning

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley Eastern Ltd.
- 2. P. N. Wartikar and J. N. Wartikar, "Applied Mathematics" (Volumes I and II), Pune Vidyarthi Griha Prakashan, Pune.
- 3. M. D. Greenberg, "Advanced Engineering Mathematics", 2nd Edition, Pearson Education

Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Assignment 1 (Based on Units I and II) (Deadline: before Insem)	5			
2	Assignment 2 (Based on Units III and IV) (Deadline: before Endsem)	5			
3	LearniCo (Best 5 sessions out of Minimum 10 sessions)	5			
4	Class Test (Before Endsem on Units III, IV, V)	5			

	List of Tutorial Assignments						
Sr. No.	r. No. Title of Assignment						
1.	Solution of first and second-order ODE for electrical networks using different techniques.	CO1, CO2, CO3,CO4					
2.	Representation and solution of O.D.E obtained in tutorial 1 in Laplace domain and verification of result using MATLAB.	CO1, CO2, CO3,CO4					
3.	Obtain the FT of the following waveforms. Distorted sine wave, Square wave, Triangular wave	CO1, CO2, CO3,CO4					
4.	Calculation of power using Fourier transform, voltage, and current using MATLAB.	CO1, CO2, CO3,CO4					
5.	Representation of difference equation in Z-transform and impulse/step response of the same.	CO1, CO2, CO3,CO4					
6.	Apply Curl and Divergence of vector in an electromagnetic field.	CO1, CO2, CO3,CO4					

	Guidelines for Tutorial / Termwork Assessment					
Sr. No.	Components for Tutorial / Termwork Assessment	Marks Allotted				
1	Assignment on Computational software	5				
2	Tutorial (Each tutorial carries 15 marks)	15				
3	Attendance (Above 95 %: 5 Marks, below 75%: 0 Marks)	5				

		S. Y. B. Tech. -Semester: III (Electric 2002: Analog and Digit	0 0,			
Teachir	ng Scheme:	Credit Scheme:	Examination Sch	ieme:		
Theory	: 3 hrs/week	Th-3	Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks			
Prerequ	uisite Courses: Fundamentals	of Electronics Engineer	ing			
Course	Outcomes: On completion of	the course, students wil	l be able to-			
	Cours	e Outcomes		Bloom's Level		
CO1	understand different digital m	emories and programma	able logic families	2. Understand		
CO2	Describe linear and nonlinear related graphs	applications of OPAMI	P with derivations an	d2. Understand 3. Apply		
CO3	Design different combinations Map.	al and sequential digital	circuits using K-	6-Create		
CO4	Design analog circuits based	on OPAMP for a given	problem.	6-Create		
	CO	OURSE CONTENTS		COs mapped		
Unit I	Linear Applications of OP	AMP	8 hrs.	CO2,CO4		
	Practical characteristics of OP, instrumentation amplifier, intes.		· ·			
Unit II		OPAMP	8 hrs.	CO2,CO4		
Oscillato	ossing detector, Design of F rs (Wein bridge and Phase shift I D/A and A/D converters			_		
Digital	to Analog converters: Weight everter, sample and hold circuit to Digital converter: Dual slo	t	-2R Ladder D/A con	verter, examples of		
_	and F to V converter. Design of combinational lo		8 hrs.	CO3		

expressions and K-maps, encoders, decoders, and a digital comparator.

Unit V Design of sequential circuit 8 hrs. CO1,CO3

Shift registers, Introduction to sequential circuit Design of asynchronous counters Up and down

synchronous counters using K-map, N modulo counters,

Digital memories: RAM, ROM, EPROM; digital logic families: PAL, PLA, FPGA

Text Books

- 1. Jaico and Charles H. Roth, "Fundamentals of Logic Design," Jr. Fourth Edition, Jaico Publishing
- 2. James, "Operational Amplifier and Linear Integrated Circuits Theory and Application," Jaico Publishing House.

- Thomas Floyd and R.P. Jain, "Digital Fundamentals", 8th edition, Pearson Education.
 P. Jain, "Modern Digital Electronics", 5th edition, Tata McGraw Hill, New Delhi.
- 3. Gaikwad R., "Operational Amplifier", 4th Edition, PHI New Delhi.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted					
1	Assignment 1 (Based on Units I and II) (Deadline: before Insem)	5					
2	Assignment 2 (Based on Units III and IV) (Deadline: before Endsem)	5					
3.	LearniCo (Best 5 sessions out of Minimum 10 sessions)	5					
4.	Mini project	5					

Teaching	g Scheme:	Credit Scheme:	Examination Sche	me:
Theory:	3 hrs/week	TH-3	Continuous Comp Evaluation: 20 Ma InSem Exam: 20 N EndSem Exam: 60	rks Aarks
_	isite Courses:- Fundamenta ing, Applied Physics	ls of Electrical Engineeri	ng, Fundamentals of	Electronics
Course (Outcomes: On completion of	of the course, students wil	ll be able to-	
		Course Outcomes		Bloom's Level
CO1	Describe the working prin	nciples of various measur	ring instruments.	1-Remember
CO2	Explain the construction transducers with calibrati	_	g instruments and	2-Understand
CO3	Calculate power, energy, measurement techniques.	-	_	3-Apply
CO4	Select appropriate measurement of electrica		icers for the	3-Apply
		COURSE CONTENT	TS .	
Unit I	Measuring Instrumer Transfo		(8hrs)	COs Mappeo
Measurir type instr Instrume	nt Transformer: Use of instr	d construction of moving ument transformers, ratio	os, basic construction	al features of C.T.
	ratio and phase angle errors Measurement of Po		(8hrs)	COs Mapped
IInit II	Wiedsul ellielle of 1	wer und Energy	(OIII 5)	CO1, CO3
Unit II				
Measurer disadvan Measurer Measurer	ment of Power: Torque tages of dynamometer type ment of power by one, two dement of Energy: Constructional (induction type) energy	wattmeter, low power to three-wattmeter method action, working princip	factor wattmeter, polds.	ly-phase wattmete
Measurer disadvan Measurer Measurer	tages of dynamometer type ment of power by one, two & ment of Energy: Constru	wattmeter, low power as three-wattmeter method action, working princip meter. TOD meter.	factor wattmeter, polds.	ly-phase wattmeton of single pha
Measurer disadvan Measurer Measurer convention Unit III Measurer method, Measurer Me	tages of dynamometer type ment of power by one, two & ment of Energy: Constru- onal (induction type) energy Measurement of Resista	wattmeter, low power at three-wattmeter method action, working princip meter. TOD meter. ance, Inductance, and tance attstone Bridge, Kelvin's attance: Maxwell's Bridge	factor wattmeter, polds. ole, torque equation (8hrs) s Double Bridge,	COs Mapped CO2, CO4 Ammeter-Voltmet

Acquisition: Single and Multi Chanel, Data Logging,

Electronic Instruments: Block diagram and operation of digital ammeter and voltmeter, Digital multimeters, Block diagram and operation of single phase and three phase static energy meter, Calibration of static energy meter. Digital Storage Oscilloscope

Unit V Instrumentation (8hrs) COs Mapped - CO3, CO4

Instrumentation: Introduction, classification, types: resistive, inductive, capacitive transducers, basic requirements for transducers. Measurement of Temperature, Linear and Angular Displacement, Pressure, Flow, and Level Measurement.

Intelligent Sensors: General Structure of smart sensors and their components, Characteristics of smart sensors and applications.

Text Books

- 1. A. K. Sawhney, "A Course in Electrical and Electronic Measurements and Instrumentation", 17th Edition, Dhanpat Rai & Co.
- 2. B. C. Nakra and K. K. Chaudhari, "Instrumentation Measurement and Analysis", 4th Edition, McGraw Hill Education India Private Limited
- 3. Melville Bigham Stout, "Basic Electrical Measurements", 3rd Edition, Literary Licensing, LLC
- 4. D. Patranabhis, "Sensors and Transducers", 2nd Edition, PHI Publications

- 1. E. W. Golding and F. C. Widdies, "Electrical Measurements and Measuring Instruments", 5th Edition, Reem Publications.
- 2. Rajendra Prasad, "Electronic Measurements and Instrumentation", 2nd Edition, Khanna Publishers.
- 3. Arun K. Ghosh, "Introduction to Measurements and Instrumentation", 4th Edition, PHI Publication.
- 4. M. M. S. Anand, "Electronics Instruments and Instrumentation Technology", 3rd Edition, PHI
- 5. D. A. Bell, "Electronic Instrumentation and Measurements", 3rd Edition, Oxford University Press
- 6. S. Gupta, J. P. Gupta, "PC Interfacing for Data Acquisition and Process Control", 2nd Edition, Instrument Society of America

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Assignment 1 (Based on Units I and II) (Deadline: before Insem)	5				
2	Assignment 2 (Based on Units III and IV) (Deadline: before Endsem)	5				
3.	LearniCo (Best 5 sessions out of Minimum 10 sessions)	5				
4.	Class test (Before Endsem)	5				

		CVDT				
	S. Y. B. Tech. Pattern 2022 Semester: III (Electrical Engineering) ELE222004: Electrical Engineering Materials					
Teaching	hing Scheme: Credit Scheme: Examination Scheme:					
v	3hrs/week	TH- 3	Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks			
Prerequi	site Courses: Fundame	entals of Electrical Engineering,	Applied Physics, A	Applied Chemistry		
Course C	Outcomes: On complete	ion of the course, students will b	e able to			
		Course Outcomes		Bloom's Level		
CO1	Define various termi	nologies used in engineering ma	terials	1-Remember		
CO2	Understand the significance of different materials for various components and applications		2-Understand			
CO3	Comment on the beh conditions	avior of the material under vario	ous operating	3- Apply		
CO4		es of electrical engineering mate quipment and appliances.	rial used in	4- Analyze		
		COURSE CONTENTS				
Unit I	Introduction to Elec	ctrical Materials	8 hrs.	CO1		
Importance of materials, Classification of electrical materials, Scope of electrical materials, Requirement of Electrical Engineering materials, Operational requirements of electrical materials, Types of engineering materials, Levels of material structure. Ferromagnetic semiconductors, Introduction to Thermoplastics, Rubbers, and Thermosets.						
Unit II	_	es of Insulating Materials	8 hrs.	CO1, CO3		
Introducti Mossotti	ion to Polar and Non- Equation, Piezo-Electr	al [Dielectric constant, Dipole re- Polar dielectric materials. Medic, Pyro-Electric and Ferro-Electric tan delta, insulating materials for	chanisms of Pola tric Materials, Die	arizations- Clausius		

Dielectric Breakdown and Testing of Materials A) Dielectric Breakdown:

Unit III

Introduction, Concept of Primary and Secondary Ionization of Gases (descriptive treatment only), Breakdown Voltage, Breakdown Strength, Factors affecting Breakdown Strengths of Solid, Liquid, and Gaseous dielectric materials.

CO₂

8 hrs.

- **B)** Testing of Materials: Explanation of following with objectives, equipment required, circuit diagrams, and observations to be taken.
- 1. Measurement of dielectric loss tangent (tan δ) by Schering Bridge-IS 13585-1994.
- 2. Measurement of dielectric strength of solid insulating material-IS 2584.
- 3. Measurement of dielectric strength of liquid insulating material -IS 6798.
- 4. Measurement of dielectric strength of gaseous insulating material.

Unit IV	Magnetic Materials and Conducting Materials	8 hrs.	CO1, CO3
----------------	---	--------	----------

Magnetic Materials: Introduction, Parameters of Magnetic material [Permeability, Magnetic Susceptibility, Magnetization], Classification of Magnetic Materials, Diamagnetism, Paramagnetism, Ferromagnetism, Ferri-magnetism, Ferro-magnetic behavior below Critical Temperature, Spontaneous Magnetization, Anti-ferromagnetism, Ferrites, Applications of Ferromagnetic Materials, Magnetic materials for Electric Devices such as Transformer Core, Core of Rotating Machines, Soft Magnetic Materials, Hard Magnetic Materials, materials used for Superconducting magnetic energy storage (SMES). High-density Magnetic materials.

Conducting Materials: Copper, Aluminum and its applications, Materials of High and Low Resistivity-Constantan, Nickel-Chromium Alloy, Tungsten, Kanthal, Silver and Silver alloys, characteristics of Copper Alloys (Brass & Bronze), Electrical Carbon Materials. Materials used for Lamp Filaments, Solders, Metals, and Alloys for different types of Thermal Bimetal and thermocouples. Introduction of High density conducting materials.

Unit V	Advances and Application of Materials in	8 hrs.	CO3, CO4
	Electrical Engineering		

Superconductivity and Superconducting Materials, Semiconductor materials used for Solar PV (Types, Efficiency of Solar PV), Materials used in Batteries, Optical Communications (Optical Fibre), Composite Material, and Fuel Cells.

Text Books

- 1. S.P. Seth, "A Course in Electrical Engineering Materials", Dhanpat Rai and Sons publication.
- 2. R. K. Rajput, "A Textbook of Electrical Engineering Materials" Laxmi Publications (P) Ltd.
- 3. K. B. Raina and S. K. Bhattacharya, "Electrical Engineering Materials", S. K. Kataria Sons.
- 4. P.K. Palanisamy, "Material Science for Electrical Engineering", Scitech Pub. Pvt. Ltd., Chennai (India).

- 1. D. M. Tagare, "Electrical Power Capacitors-Design & Manufacture", Tata McGraw Hill Publication.
- 2. S. P. Chalotra and B. K. Bhattacharya, "Electrical Engineering Materials", Khanna Publishers, Nath Market.
- 3. C. S. Indulkar and S. Thiruvengadam, "Electrical Engineering Materials", S. Chand and Company Ltd.
- 4. Kamraju and Naidu, "High Voltage Engineering", Tata McGraw Hill Publication.
- 5. James F. Shackelford & M. K. Muralidhara, "Introduction to Material Science for Engineering", Sixth Edition, Pearson Education.
- 6. IEEMA Ratner, "Insulation Technology Course Material", Pearson Education.
- 7. Traugott Fischer, "Materials Science for Engineering Students", Elsevier Publications.
- 8. Rakesh Das Begamudre, "Energy Conversion Systems", New Age International Publishers.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Assignment 1 (Based on Units I and II) (Deadline: before Insem)	5		
2	Assignment 2 (Based on Units III and IV) (Deadline: before Endsem)	5		
3.	LearniCo (Best 5 sessions out of Minimum 10 sessions)	5		
4.	Group Presentations	5		

		S. Y. B. Tech.			
	Pattern 2020	Semester: III (Electr	rical Engine	ering)	
		Transformers and Inc			
Teaching	g Scheme:	Credit Scheme:	Examinat	tion Schen	ne:
Theory:	3 hrs./week	TH: 3	Continuous Comprehensive		
				n: 20 Mar	
				am: 20 M	
Duonogui	igita Canagaga Eundamantal	a of Electrical Engineeri		Exam: 60	Marks
	isite Courses: Fundamental				
Course (Outcomes: On completion of	of the course, students w	ill be able to	_	
		Course Outcomes			Bloom's Level
CO1	State construction and w machines.	orking principle of trans	sformer and	induction	1-Remember
CO2	Explain various character machines.	ristics and torque speed	relations of	electrical	2-Understand
CO3	Calculate equivalent circu	uit parameters of the giv	en machines		3-Apply
CO4	Analyze the performance standards.	Analyze the performance parameters of machines and compare with standards			4-Analyze
CO5	Select machines for appropriate applications.		4-Analyze		
		COURSE CONTEN	TS		l
Unit I	Single Phase Transforme	rs:		8 hrs.	CO1, CO3,
Transform	mers on no-load and on-l	oad, equivalent circuit	s. Tests to	determine	equivalent circuit
	ers, and phasor diagrams				
	ner ratings. Polarity test, D				
	n – star/star delta/delta, sta	r/delta, delta/star, zigza	ig/star, and	V/V. Tasti	ings as per Indian
Standard	s. Three-Phase Transforme			O lana	CO1 CO2
Unit II	Three-Phase Transforme	rs:		8 hrs	CO1, CO3, CO4
Phase con	nversion and parallel oper	ation of Three Phase T	'ransformer	S	1 204
	nnection for three-phase to				netizing current ir
transforme					
	mer Testing: Polarity Tes		Sumpner Te	st) on sing	gle phase and three
	sformer, Induction Regular			Tuon of	an hahardan
	ransformers: Welding Transupply (K-rated transforme		ansiormers,	1 ranstorm	er benavior on non
Unit III	Three-Phase Induction M	*		8 hrs.	CO2, CO3, CO4, CO5
	tion, the principle of working	g. losses and efficiency	phasor diag	rams, equi	
	of equivalent circuit, torque	_	-	-	
•	nt circuit parameters, circle				
Unit IV	Three-Phase Induction M	<u> </u>		8 hrs.	CO2, CO3, CO4, CO5

Staring of Induction motor, speed control of IM. Induction generators., Comparison between SCIM and SRIM, Selection of motors based on application based. (NEMA standard)

Unit V	Single Phase Induction Motor	8 hrs.	CO2, CO3,
			CO4, CO5

Construction of single phase induction motor, double field revolving theory. Equivalent circuit and torque-slip characteristics based on double-revolving field theory, Tests to determine the parameters of equivalent circuit and calculation of performance characteristics of the motor. Methods of self-starting. Types of single-phase induction motors: Split-phase motors (Resistor split-phase motor, Capacitor-start motor, Capacitor start and capacitor run the motor, and permanent capacitor motor). Comparison of 1-phase induction motor with 3-phase induction motor.

Text Books

- 1. Dr. P.S. Bimbhra, "Electrical Machinery" Khanna Publications.
- 2. Dr. P.S. Bimbhra, "Generalized theory of Electrical Machinery" Khanna Publications.
- 3. Nagrath and Kothari, "Electrical Machines" 2nd Ed. Tata McGraw Hill.
- **4.** Chenn K Krishna Reddy, "Electrical Machines- I and II" SciTech Publications (India) Pvt. Ltd. Chenn.
- **5.** Edward Hughes, "Electrical Technology" ELBS, Pearson Education.
- 6. Smarajit Ghosh, "Electrical Machines" Pearson Education, New Delhi.

- 1. M.G. Say, "Performance and Design of AC. Machines", CBS Publishers and Distributors.
- **2.** Charles I Hubert, "Electrical Machines Theory, Application, and Control", Pearson Education, New Delhi, Second Edition.
- 3. A.E. Fitzgerald, Charles Kingsley, Stephen D. Umans, "Electrical Machines", Tata McGraw

	Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Assignment 1 (Based on Units I and II) (Deadline: before Insem)	5		
2	Assignment 2 (Based on Units III and IV) (Deadline: before Endsem)	5		
3.	LearniCo (Best 5 sessions out of Minimum 10 sessions)	5		
4.	Class test (Before Endsem)	5		

	Pa	S. Y. B. Tech. ttern 2022 Semester: III (Electrical Engine ELE222014: Engineering Ethics	ering)		
Teaching Scheme: Credit Scheme: Examination Scheme:					
Theory:	1hrs/week	TH-1	Term work-25 Marks		
Course C	Outcomes: On co	 mpletion of the course, students will be able to	_		
		Course Outcomes		Bloom's Level	
CO1	Define various t	Define various terms related to engineering ethics.		1-Remember	
CO2	Elaborate on safety, rights, and responsibilities related to the workplace, IPR, and environment.		2-Understand		
CO3		ferent situations ethically in engineering proble	ms.	5- Evaluate	
		COURSE CONTENTS			
Unit I		Engineering Ethics	06hrs	CO1, CO3	
moral issu theory, Co	es, Types of inconsensus and Cor	Work ethic, Respect for others, Senses of Equiry, Moral dilemmas, Moral Autonomy, Kontroversy, Models of professional roles, Theolion, Uses of Ethical Theories.	ohlberg's th	eory, Gilligan's	
Unit II	Sa	fety, Rights, and Responsibilities	08 hrs	CO1, CO2, CO3	

Safety and Risk, Assessment of Safety and Risk, Risk Benefit Analysis and Reducing Risk – Respect for Authority, Collective Bargaining, Confidentiality, Conflicts of Interest, Occupational Crime, Professional Rights, Employee Rights, Intellectual Property Rights (IPR), Discrimination Multinational Corporations, Environmental Ethics, Computer Ethics, Weapons development engineers

as Managers, Consulting Engineers, Engineers as Expert Witnesses and Advisors, Moral Leadership, Code of Conduct, and Corporate Social Responsibility.

Text Books

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard, and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009.
- 3. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.

Sr. No.	Components for Termwork	
1	Assignment 1 (Based on Unit I)	5
2	Assignment 2 (Based on Unit II)	5
3.	LearniCo (Best 5 sessions out of Minimum 10 sessions)	5
4.	Case studies	5

4-Analyse

S. Y. B. Tech. Pattern 2022 Semester: III (Electrical Engineering) ELE222007: Measurement and Machines Lab					
Teaching	g Scheme:	Credit Scheme:	Examination Schen	ne:	
Practical: 4 hrs/week PR: 2 Termwork: 25 Marks Practical: 50 Mark					
Prerequisite Courses, if any: - Fundamentals of Electrical Engineering, Fundamentals of Electronics Engineering, Applied Physics Course Outcomes: On completion of the course, students will be able to—					
	1	Course Outcomes		Bloom's Level	
CO1	Use measuring instrument techniques for the measuring		<u>e</u>	3-Apply	
CO2	Perform speed control an	Perform speed control and load test of three phase induction motor.			
CO3	Perform experiment in the group, write a lab report, and present it effectively			3-Apply	
CO4	Perform parallel operation	n of transformers and jus	stify load sharing.	4-Analyse	
COS	Evaluate performance par	rameters of transformer a	and induction motor	4-Analyse	

Part A: Measurement Lab

CO5

Perform any eight experiments from 1 to 13. An industrial visit is compulsory.

with experimentation.

List of Laboratory Experiments				
Sr. No.	Laboratory Experiments	COs Mapped		
1	Measurement of current, voltage, and power using instrument transformer (CT & PT).	CO1, CO3		
2	Measurement of Power and Power Factor of a three-phase circuit by the two-wattmeter method.	CO1, CO3		
3	Measurement of reactive power by one-wattmeter method with all possible connections of current coil and pressure coil.	CO1, CO3		
4	To calibrate a single / three-phase Energy Meter by comparing it with a Substandard meter.	CO1, CO3		
5	To measure unknown inductance using Anderson Bridge.	CO1, CO3		
6	To measure unknown capacitance using Schering Bridge.	CO1, CO3		
7	To measure the low resistance by using Kelvin Double Bridge Method.	CO1, CO3		
8	To study and plot the characteristic of LVDT.	CO1, CO3		
9	Measurement of voltage, current, time period, frequency, and phase angle using CRO.	CO1, CO3		
10	Measurement of soil resistivity using four pin Wenner method.	CO1, CO3		
11	Study of programmable LCR meter; Measure L, C, R, Q, dissipation factor, and power factor of the given component.	CO1, CO3		
12	Study of Digital Storage Oscilloscope:	CO1, CO3		

	a) Different modes in DSO such as Roll, Average, and Peak detection.b) Capture transients.	
	c) Various MATH operations.	
13	Detailed study of online Energy Monitoring System, various parameters, EMS software capabilities, trending with IOT applications. Demonstration of EMS system by inviting experts.	CO1, CO3
14	Industrial Visit Report (Compulsory).	CO1, CO3

Part B: Machine Lab

Perform any eight experiments from 1 to 10. An industrial visit is compulsory.

	List of Laboratory Experiments			
Sr. No.	Laboratory Experiments	COs Mapped		
1	O.C. and S.C. test on single-phase Transformer. a. Determination of equivalent circuit parameters from the test data. b. Determination of voltage regulation and efficiency.	CO1, CO3, CO5		
2	Parallel operation of two single-phase transformers and study of their load sharing under various conditions of voltage ratios and leakage impedance.	CO1, CO3, CO4		
3	Polarity test on single phase and three phase transformer.	CO1, CO3, CO4		
4	Study of Back-to-Back Test (Sumpner Test) on single phase transformer.	CO1, CO3, CO5		
5	To determine the phase conversion - Scott connection for three-phase to two-phase conversion.	CO1, CO3		
6	Load test on a 3-phase induction motor.	CO1, CO3, CO5		
7	Determination of parameters of equivalent circuit and performance analyses of IM.	CO1, CO3, CO5		
8	Speed control of 3-phase IM by pole changing (SCIM).	CO1, CO2, CO3		
9	Speed control of 3-phase IM by rotor resistance (SRIM).	CO1, CO2, CO3		
10	Determination of equivalent circuit parameters of single-phase IM.	CO1, CO3, CO5		
11	Industrial Visit Report (Compulsory).	CO3		

Guidelines for Laboratory Conduction

- 1. The teacher will brief the given experiment to students for its procedure, observations, calculations, and outcome.
- 2. Apparatus and equipment required for the allotted experiment will be provided by the lab technician using SOP.
- 3. Students will perform the allotted experiment in a group (2-3 students in each group) under the supervision of faculty and lab technician.
- 4. After performing the experiment students will check their readings and calculations from the teacher.
- 5. After checking they have to write the conclusion on the final results.

Guidelines for Student's Lab Journal

The write-up should include a title, aim and apparatus, circuit or block diagram, waveforms, brief theory, procedure, observations, graphs, calculations, conclusion, and questions, if any.

Guidelines for Termwork Assessment

- 1. Each experiment from the lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding, and R-3 for presentation/journal writing where each rubric carries ten marks.

	S. Y. B. Tech. Pattern 2022 Semester: III (Electrical Engineering) ELE222008: Analog and Digital Circuits Lab			
Teachin	ng Scheme:	Credit Scheme:	Examination Schen	ne:
Practica	al: 2 hrs/week	PR-1	Termwork: 25 Mar Practical: 25 Mark	·-
Prerequ	iisite Courses: Fundamental	of Electronics Engineer	ring Lab	
Course	Outcomes: On completion of	of the course, students w	ill be able to-	
	Course Outcomes		Bloom's Level	
CO1	Apply and analyze applications of OPAMP in a closed and open loop configuration.		3-Apply 4-Analyze	
CO2	Perform experiment in the group, write a lab report, and present it effectively 3-A			
CO3	CO3 Design and implement combinational and sequential circuits.		5-Create	
CO4	Design uncontrolled rectif	iers with given specifica	utions	5-Create

	List of Laboratory Experiments			
Sr. No.	Laboratory Experiments (Perform any three from 1 to 5, perform any three from 8 to 11, 6 and 7 are compulsory)	COs Mapped		
1.	Find the phase angle difference between the same frequency signal using ZCD and AND gate. (Hardware)	CO1, CO		
2.	Design of comparator for given reference voltage. (Hardware)	CO1, CO		
3.	Design sine, and triangular wave generator. (Hardware)	CO1, CO		
4.	Design first-order high pass and low pass filters using OPAMP in any open-source software for given specifications. (Software)	CO1, CO		
5.	Measurement of CMRR of 3 OPAMP Instrumentation amplifiers. (Hardware)	CO1, CO		
6.	Design of single phase bridge rectifier with output voltage and specified ripple. (this lab should be designed for each student, perform in simulation and demonstrate with hardware in the laboratory with design documents) (Software and Hardware)	CO2, CO		
7.	Implementation of A/D and D/A Converters	CO1, CO		
8.	Design of logical circuit for the display of decimal numbers on a seven- segment display. (Hardware)	CO2, CO		
9.	Design a three-bit full adder using any open-source software. (Software)	CO2, CO3		
10.	Design a logical circuit to convert code from one numbering system to another (Software/Hardware)	CO2, CO3		
11.	Design a digital clock or stopwatch using a decade counter.(IC74192) (Hardware)	CO2, CO		
	Guidelines for Laboratory Conduction			

- 1. The teacher will brief the given experiment to students for its procedure, observations, calculations, and outcome.
- 2. Apparatus and equipment required for the allotted experiment will be provided by the lab technician using SOP.
- 3. Students will perform the allotted experiment in a group (2-3 students in each group) under the supervision of faculty and lab technician.
- 4. After performing the experiment students will check their readings and calculations from the teacher.
- 5. After checking they have to write the conclusion on the final results.

Guidelines for Student's Lab Journal

The write-up should include a title, aim and apparatus, circuit or block diagram, waveforms, brief theory, procedure, observations, graphs, calculations, conclusion, and questions, if any.

Guidelines for TermWork Assessment

- 1. Each experiment from the lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding, and R-3 for presentation/journal writing where each rubric carries ten marks.

S. Y. B. Tech. Pattern 2022 Semester: III (Electrical Engineering) ELE222009: Electrical Engineering Materials Lab				
Teaching	Scheme:	Credit Scheme:	Examination Sche	me:
Practical	Practical: 2 hrs/week OR-1 Termwork: 25 Mar Oral: 25 Mar			- ·-
Prerequi	Prerequisite Courses: Fundamentals of Electrical Engineering, Applied Physics, Applied Chemistry			
Course C	Outcomes: On completion of	of the course, students w	ill be able to	
		Course Outcomes		Bloom's Level
CO1	Perform testing of variou standard	s electrical engineering	materials as per IS	3-Apply
CO2	CO2 Interpret and analyze the results obtained from testing of materials through experimentation.			4-Analyze
CO3	Perform experiment in the group, write a lab report, and present it effectively		4- Apply	

	List of Laboratory Experiments				
	(All experiments are compulsory)				
Sr. No.	Laboratory Experiments	COs Mapped			
1.	To measure the dielectric strength of solid insulating materials.	CO1, CO2, CO3			
2.	To measure the dielectric strength of liquid-insulating materials	CO1, CO2, CO3			
3.	To measure the dielectric strength of gaseous insulating materials using Sphere Gap-Unit.	CO1, CO2, CO3			
4.	To obtain the Hysteresis Loop of the Ferro-Magnetic Material.	CO1, CO2, CO3			
5.	To understand the principle of thermocouples and to obtain characteristics of different thermocouples.	CO1, CO2, CO3			
6.	To measure the Insulation Resistance and kVAr capacity of the power capacitor.	CO1, CO2, CO3			
7.	To measure the Resistivity of High Resistive Alloys.	CO1, CO2, CO3			
8.	Testing of resins and polymers.	CO1, CO2, CO3			
9.	Industrial Visit (Compulsory)	CO1, CO2, CO3			

Guidelines for Laboratory Conduction

- 1. The teacher will brief the given experiment to students for its procedure, observations, calculations, and outcome.
- 2. Apparatus and equipment required for the allotted experiment will be provided by the lab technician using SOP.
- 3. Students will perform the allotted experiment in a group (2-3 students in each group) under the supervision of faculty and lab technician.
- 4. After performing the experiment students will check their readings and calculations from the teacher.
- 5. After checking they have to write the conclusion on the final results.

Guidelines for Student's Lab Journal

The write-up should include a title, aim and apparatus, circuit or block diagram, waveforms, brief theory, procedure, observations, graphs, calculations, conclusion, and questions, if any.

Guidelines for Termwork Assessment

- 1. Each experiment from the lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding, and R-3 for presentation/journal writing where each rubric carries ten marks.

	S. Y. B. Tech. Pattern 2022 Semester: III (Electrical Engineering) ELE222010: Python for Numerical Methods				
Teaching	g Scheme:	Credit Scheme:	Examination Schem	ne:	
Practical	l: 2 hrs/week	TW-1	Termwork: 25 Mar	·ks	
Prerequi	Prerequisite Courses: Applied Mathematics-III, Computer Programming				
Course (Outcomes: On completion of	f the course, students w	ill be able to-		
	Course Outcomes		Bloom's Level		
CO1	Choose the correct numerical method depending on the problem definition.			2-Understand	
CO2	CO2 Solve the given complex problem using selected numerical methods.			3-Analyze	
CO3 Develop an algorithm and flow chart for numerical methods.			4. Apply		
CO4	Write programs for numrepresentation.	erical methods using I	Python with graphical	5. Create	

	List of Laboratory Experiments			
Sr. No.	Laboratory Experiments	COs Mapped		
1	Develop an algorithm, draw a flow chart, and write a program to implement the following: (a) for loop and while loop application in Descarte's rule of the sign. (b) if-else and functions application in Intermediate value theorem. (c) 2DArray formation application in matrix data entry, transposition, and printing matrix.	CO1, CO2, CO3, CO4		
2	Develop an algorithm, draw a flow chart, and write a program to implement the Birge-Vieta method.	CO1, CO2, CO3, CO4		
3	Develop an algorithm, draw a flow chart, and write a program to implement the Bisection/Regula falsi /Newton-Raphson method (single variable) in the following applications (formulate problem statement in any one of the following areas (but not limited to)) (a) Finding critical clearing angle in power system stability (give equation directly) (b) Relation between voltage and current in solar PV.			
4	Develop an algorithm, draw a flow chart, and write a program to implement curve fitting using a least square approximation in the following applications (formulate problem statement in any one of the following areas (but not limited to)) (a) Voltage across capacitor during charging. (b) Relate temperature and resistance in the thermocouple. (c) Current through inductor during excitation.			
5	Develop an algorithm, draw a flow chart, and write a program to apply Newton's forward/backward interpolation method in the following			

	applications (formulate problem statement in any one of the following areas (but not limited to))				
	(a) Voltage across capacitor during charging				
	(b) Relation of speed and armature voltage in DC motor.				
	(c) Relation of breakdown voltage and thickness of insulation				
	Develop an algorithm, draw a flow chart, and write a program to apply				
	Newton's divided difference/Lagrange's interpolation method in the				
	following applications (formulate problem statement in any one of the				
	following areas (but not limited to))	CO1, CO2,			
6	(a) Power transfer equation to find power at a particular angle	CO3, CO4			
	(b) Transformer efficiency at particular loading (data of % loading and				
	efficiency is known at a particular power factor)				
	(c) Growth of electricity consumption in India (year Vs. Per capita				
	electrical consumption).	CO1 CO2			
	Develop an algorithm, draw a flow chart, and write a program to				
	implement the trapezoidal/ Simpson (1/3)rd rule in the following				
	applications (formulate problem statement in any one of the following				
7	areas (but not limited to))				
	(a) RMS/Average value of given waveform.				
	(b) Finding current through first-order circuit (RL series)				
	(c) kWh consumption from the load curve				
	(d) Magnetic field intensity in overhead transmission line	CO1 CO2			
	Develop an algorithm, draw a flow chart, and write a program to implement Gauss elimination/Jordan in the following applications				
	(formulate problem statement in any one of the following areas (but not				
8	limited to))				
	(a) Electrical network using KVL				
	(b) Electrical Network using KCL				
	. Develop an algorithm, draw a flow chart, and write a program to	CO1, CO2			
	implement Gauss Jacobi/Seidel in the following applications (formulate				
9	problem statement in any one of the following areas (but not limited to))				
	(a) Electrical network using KVL				
	(b) Electrical Network using KCaL				
	Develop an algorithm, draw a flow chart, and write a program to	CO1, CO2,			
	implement Modified Euler's/4th order RK method in the following				
	applications (formulate problem statement in any one of the following				
10	areas (but not limited to)				
	(a) Response of RC series circuit with DC				
	(b) Response of RL circuit with DC				
	(c) Deflection angle in MI-type instrument				
	Guidelines for Laboratory Conduction				

The Instructor Manual should contain the following related to every program

- Theory related to the method
- Algorithm and Flowchart of the method
- Three to four different sets of problem statements for the numerical method
- Solve numerical using the appropriate method
- Ten questions based on method and related Python commands
- Expected Output

Guidelines for Student's Lab Journal

The student's Lab Journal should contain the following related to every experiment:

- Theory related to the method
- Algorithm and Flowchart of the method
- Three to four different sets of problem statements for the numerical method
- Solve numerical using the appropriate method
- Ten questions based on method and related Python commands

Guidelines for Termwork Assessment

- 1. Each experiment from the lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding, and R-3 for presentation/journal writing where each rubric carries ten marks.

		S. Y. B. Tech. 2 Semester: IV(Electronic Control of the Control of	0 0,		
Teaching		2011: Electrical Netwo	ork Analysis Examination Scheme	me:	
Theory: 3hrs/week		TH-3 Continuous Comprehe Evaluation: 20 Marks InSem Exam: 20 Mar EndSem Exam: 60 Mar		ks urks	
Prerequise Physics.	site Courses: Fundamental	s of Electrical Engineer	ing, Applied Mathema	tics, and Applied	
	Outcomes: On completion of	of the course, students w	vill be able to—		
		Course Outcomes		Bloom's Level	
CO1	Define different laws and	theorems related to ele	ctrical networks.	1-Remember	
CO2	Apply theorems and Lapl problems.	Apply theorems and Laplace transform for solving electrical network			
CO3		Analyze transient response and steady state of AC/DC electrical circuits in time and Laplace domain.			
CO4	Design the low pass and high pass filters based on the given specification.			4- Analyze	
CO5	Evaluate the different par	ameters in two-port net	works.	5-Evaluate	
		COURSE CONTEN	ITS	-1	
Unit I	Basis Circuit Analysis		(8hrs)	CO1,CO2	
mesh-ana	sources, the concept of sour lysis in AC and DC circuit, ntion, magnetic coupled cir	nodal and super nodal	analysis AC and DC ci		
	Network Theorem for A	Ţ	(8hrs)	CO1,CO2	
	ion, Thevenin, Norton, Mory: Incidence, tie set, and o		fer, Reciprocity, and	Millman Theorems.	
Unit III	Transients in Electrical N	Networks	(8hrs)	CO3	
and R-L-C	the transient and steady-s network in the time doma ansient state response.			-	
Unit IV	Transient Analysis in S-		(8hrs)	CO4	
series and j	unsform representation of R parallel R-L, R-C, and R-L- ow pass filters, design of filt	C circuits (Source free,			
Unit V	Two Port Network		(8hrs)	CO5	
Two port n	etworks, various two-port r	network parameters, and	d their interrelationship	s. Network	

Functions & Responses: Concept of complex frequency, driving point, and transfer functions for one port and two port network, poles & zeros of network functions, Restriction on Pole and Zero locations of network function. Impulse response and complete response. Time domain behavior form a pole-zero

plot.

Text Books

- 1. M. E. Van Valkenberg, "Network Analysis", Third Edition, Prentice Hall of India Publication.
- 2. W. H. Hayt. Jr. and J. E. Kemmerly, "Engineering Circuit Analysis", Fifth Edition, Tata-McGraw Hill Edition.
- 3. Desoer and Kuh, "Basic circuit theory", Tata McGraw Hill Edition.
- 4. Joseph A Edminster, "Theory and Problems of Electric Circuits", Shaum Series.
- 5. G. K. Mittal, "Network Analysis and Synthesis", Khanna Publication.

- 1. D. Roy Choudhury, "Networks and systems" New Age International Publishers.
- 2. A Sudhakar and Shaymmohan S Palli, "Circuit & Network Analysis and Synthesis", TMH Publication.
- 3. Abhijit Chakraborty, "Circuit Theory", DhanpatRai and Company.
- 4. Ravish R Singh, "Network Analysis and synthesis", McGraw Hill Education (India).

	Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation			
1	Assignment 1 (Based on Units I and II) (Deadline: before Insem)	5		
2	Assignment 2 (Based on Units III and IV) (Deadline: before Endsem)	5		
3.	LearniCo (Best 5 sessions out of Minimum 10 sessions)	5		
4.	Class test based on units III to V	5		

S. Y. B. Tech. Pattern 2022 Semester: IV (Electrical Engineering) ELE222012: Microcontroller and Embedded Systems					
Teaching	g Scheme:	Credit Scheme:	Examination Scheme:		
Theory:	3 hrs/week	TH: 3	Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks		
Prerequi	isite Courses: Analog and I	Digital Circuits			
Course (Outcomes: On completion of	of the course, students wil	ll be able to—		
		Course Outcomes		Bloom's Level	
CO1	Describe the architectur microcontroller and embe		are features of the	2-Understand	
CO2	Write assembly language	programs to perform a g	iven task.	3- Apply	
CO3	Use operating modes of I and various types of inter	•	_	3- Apply	
CO4			6 -Create		
		COURSE CONTENT	TS .		
Unit I	Introduction to M	licrocontrollers	8 hrs	COs Mapped - CO1, CO2, CO3	
	of MCS51, its architecture, unction registers in MCS53			memory interfacing,	
Unit II	Addressing modes an assembly pro	ŕ	8 hrs	COs Mapped - CO1, CO2	
	ng modes of 8051, Arithme	tic, logical, Boolean, and	Program instructions	s of 8051, programs	
using ass Unit	embly language. Introduction to em	shaddad ayatama	8 hrs	COs Mapped	
III	introduction to em	ibedded systems	oms	-CO1, CO2, CO3	
systems,	nding an embedded system introduction to ARM (RISo ocessor, program status regis	C) processor, an overvie	w of its architecture,	different modes of	
Unit	Instruction Set and Program	-	8 hrs	COs Mapped -	
IV	Proces	ssor		CO1, CO2	
instructio	Data transfer instruction – Arithmetic instruction - Logical Instruction, Multiply instruction, Branch instruction, Load/Store instruction, Swap instruction, Solving a simple equation, generation of the				
Unit V	aveform, Memory operation Real-world i		8 hrs	COs Mapped	

- CO4

Interfacing with simple devices such as LCD, keyboard, motor control, sensors (temperature, voltage and current, etc.), LED 7 segment display, DTMF decoder, analog-digital converter, global system for mobile communication, etc. with 8051 microcontroller and STM32F103 ARM processor.

Text Books

- 1. Andrew N Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide, Morgan Kaufmann Publishers, 1st Edition, 2004.
- 2. Mohammad Ali Mazidi, Janice Gillispie Mazidi, "The 8051 Microcontroller and Embedded, Pearson Education India Publisher, 2nd Edition, 2006.
- 3. Mazidi, Mazidi, and McKinley, "The 8051 microcontroller and Embedded systems", Pearson Publication, 2nd Edition, 2006.

- 1. Kenneth J. Ayla, "The 8051 Microcontroller", Thomson learning, 3rd Edition, 2010.
- 2. D Karuna Sagar, "Microcontroller 8051", Oxford: Alpha Science, 2011.
- 3. P.V Guruprasad, "Arm Architecture System on Chip and More", Apress, 2013.

Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation		
1	Assignment 1 (Based on Units I and II) (Deadline: before Insem)	5	
2	Assignment 2 (Based on Units III and IV) (Deadline: before Endsem)	5	
3.	LearniCo (Best 5 sessions out of Minimum 10 sessions)	5	
4.	Mini project	5	

S. Y. B. Tech. Pattern 2022 Semester: IV (Electrical Engineering)						
	ELE222013: Power Electronics					
Teaching	Teaching Scheme: Credit Scheme: Examination Scheme:					
Theory: 3hrs/week TH-3 Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks			Marks 0 Marks			
Prerequi	site Courses: Analog and I	Digital Circuits, Applied I	Mathematics III			
Course C	Outcomes: On completion of	of the course, students wi	ll be able to-			
		Course Outcomes		Bloom's Level		
CO1	Select switching devices	for a given power conver	ter	2-Understand		
CO2	Draw circuit diagrams an different loads	d waveforms for convert	er circuits with	3- Apply		
CO3	Analyze the operation and converters	-		4- Analyze		
CO4	Design simple power elec	etronics converter circuits	S	6- Create		
		COURSE CONTENT	CS .	•		
Unit I	Power Semiconductor D	evices	(8 hrs.)	CO1, CO2		
IGBTs-Pr commutat Unit II	uctor switches: power dioc rinciples of operation, char tion (class C&D). Controlled Rectifiers	acteristics, Thyristor rat	(8 hrs.)	gate drive circuits and CO1, CO2		
converter and RLE load and s	with R, RL, and RLE load load, Principles of three-psource inductances, Introductances	, Principles of single-pha hase fully-controlled con	se half-controlled	converter with R, RL with R load, Effect of		
Unit III	DC-DC Converters		(8 hrs.)	CO3,CO4		
-	n and step-up chopper, cont mode regulators- Buck, Bo		• • • • • •	- I		
Unit IV	DC-AC converters	osi, buck-boosi regurato	(8 hrs.)	CO3, CO4		
Single-phase and three-phase voltage source inverters (both 180 and 120 degrees conduction mode), Voltage and harmonic Control, PWM techniques: Multiple PWM, Sinusoidal PWM, modified sinusoidal PWM, Introduction to Multilevel Converter, Current source inverter.						
Unit V	AC-AC converters		(8 hrs.)	CO2, CO3		
	Single and three-phase controllers, phase control, PWM AC voltage controller, Principle of ON-OFF control and cyclo-converters, Introduction to Matrix converters.					
<u> </u>	Text Books					

- 1. Muhammad H. Rashid, "Power Electronics Circuits, Devices and Applications", Pearson, 4th Edition, 2018.
- 2. Ned Mohan, Tore M. Undeland, William P. Robbins, "Power Electronics", John Wiley & Sons Publications, 3rd Edition, 2006.

- 1. P.S.Bimbhra, "Power Electronics", Khanna Publishers, 6th Edition, 2016
- 2. Vedam Subramaniam, "Power Electronics", New Age International (P) Ltd Publishers, 2001.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Assignment 01 (Based on Units I and II) (Deadline: before Insem)	5			
2	Assignment 02 (Based on Units III and IV) (Deadline: before Endsem)	5			
3.	LearniCo (Best 5 sessions out of Minimum 10 sessions)	5			
4.	Class test (Before End sem)	5			

Teaching	Teaching Scheme: Credit Scheme: Examinati						
Theory: 3 hrs./week		TH-03	CCE: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks				
Prerequi	site Courses: Fu	ndamentals of Electrical Engineering					
Course C	Outcomes: On co	mpletion of the course, students will be able to	0-				
		Bloom's Leve					
CO1	Define various load dispatch, as	1. Remember					
CO2		Elaborate tariff and allocation of generating units on an economical basis.					
CO3	Calculate electristation and trans	3- Apply					
CO4	Model and analyze the performance of the overhead transmission line 3-						
CO5	Evaluate different types of tariffs and methods of economical load dispatch and unit commitment.						
		COURSE CONTENTS					
Unit I Structure of Power System and Tariff		08 hrs	CO1, CO2, CO3, CO5				

peak load stations (04 hrs)

Tariff: Introduction of Tariff, objectives, desirable characteristic, various consumer categories, twopart tariff, three-part tariff, Time of day tariff for H.T and L.T industrial and commercial consumers, Introduction to Availability based tariff (ABT), kVAh tariff (4 hrs)

Unit II	Economical Load Dispatch and Unit Commitment	08 hrs	CO1, CO2,	
	•		CO3. CO5	

Economic load dispatch: Cost curve of thermal and hydro plant, equal incremental cost method, method of Lagrange multiplier (neglecting transmission losses), Bmn coefficient, economic scheduling of thermal plant considering the effect of transmission losses, penalty factor (05 hrs)

Unit commitment: Concept of unit commitment, constraints on unit commitment – spinning reserve, thermal and hydro constraints, methods of unit commitment – priority list and dynamic programming, (03 hrs)

Unit III	Mechanical Design of Transmission System	08 hrs	CO1, CO3

Overhead Line Insulators: Types of insulators, its construction, and their applications such as Pin type, Suspension type, Strain type, Shackle type, Post insulators, and bushing. Potential distribution over suspension insulators, String efficiency, and Methods of improving string efficiency (03 hrs)

Sag Calculations: Main components of overhead lines, Various types of line supports, Conductor spacing, Length of span, Calculation of sag for equal and unequal supports, and effect of ice and wind loading. (02 hrs)

Underground Cables: Construction of Cables, Classification of cables, XLPE cables, Capacitance of single core and three core cable, Dielectric stresses in single core cable, Grading of cables, inter sheath grading, capacitance grading. (03 hrs)

Unit IV Electrical Design of Transmission System 08 hrs CO1, CO3

Resistance of Line: Resistance of transmission line, Skin effect, and proximity effect, Factors responsible for the production of these effects,

Inductance and capacitance calculations: Internal and external flux linkages of single conductor, Electric potential at a single charged conductor, Potential at the conductor in a group of charged conductors, Inductance and capacitance of single phase two wire line, the necessity of transposition, inductance, and capacitance of three-phase line with symmetrical and unsymmetrical spacing with transposition (Based on GMD and GMR Approach), Inductance of bundled conductors.

Unit V Modeling of Transmission System 08 hrs CO1, CO4

Classification of lines based on length and voltage levels, modelling of short, medium, and long transmission line, generalized constant of transmission line, the concept of complex power, and power flow equations using a generalized constant.

Text Books

- 1. V.K.Meheta, Rohit Mehta, "Principles of Power System", 2022 Color Edition, S. Chand Publication.
- 2. J.B. Gupta, "Transmission and Distribution", 2018-Edition, S.K. Kataria and Sons, New Delhi.
- 3. A Chakraborty, M.L.Soni, P.V. Gupta, U.S.Bhatnagar," A text book on Power System Engineering", 2009 Edition, Dhanpatrai& Co, Delhi.

- 1. W.D.Stevenson, "Power System Analysis", 2nd Edition, Tata McGraw Hill Publications.
- 2. M.V. Deshpande," Elements of Power Station Design", PHI Publication.
- 3. I.J. Nagrath and D.P.Kothari," Modern Power System Analysis", 4th Edition Tata McGraw Hill
- 4. D. Das," Electrical Power System", New Age Publication
- 5. Hadi Sadat, "Power System Analysis", McGraw Hill

Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Assignment 01 (Based on Units I and II) (Deadline: before Insem)	4		
2	Assignment 02 (Based on Units III and IV) (Deadline: before Endsem)	4		
3.	Learnico (Best 5 sessions out of Minimum 10 sessions)	4		
4.	Class test (Before Endsem) Based on Units III to V	4		
5.	Industrial Visit assessment	4		

S. Y. B. Tech. Pattern 2022 Semester: IV (Electrical Engineering) ELE222015: Design Thinking for Academic Projects					
Teachin	g Scheme:	Credit Scheme:	Examination Sche	me:	
Theory:	3 hrs/week	TH: 3	Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks		
Prerequ	isite Courses:		•		
Course	Outcomes: On completion of	f the course, students wi	ll be able to-		
		Course Outcomes		Bloom's Level	
CO1	Select the topic for the a statement, scope, and obj		the project problem	2-Understand	
CO2	Develop a system block project planning, execution	diagram and outline	important steps in	3- Apply	
CO3	Apply design thinking str	ategy in project execution	n	3- Apply	
CO4	Prepare and present proje	ct poster, presentation, a	nd report	3-Apply	
		COURSE CONTENT	ΓS		
Unit I	Project Life Cycle		8 hrs	COs Mapped – CO1	
failure, p	tion to project, the important project management, selecting of cycle (Activity I)				
Unit II	Design Thinking and Idea	ation	10 hrs	COs Mapped - CO3	
desirable Ideation mapping Unit	Introduction to design thinking, importance, the impact of design thinking, design innovation, desirable, feasible, viable, human-centered design, double diamond approach Ideation definition, ideation strategies, brainstorming, Opposite thinking, idea sketching, mind mapping (Activity II) Unit Project Definition 6 hrs COs Mapped				
III			1 1 .	-CO3	
)	project problem statement, agram, methodology, develo	1 0	1	nem/process/project	
Unit IV	Project Execution	onig project plan (retivi	6 hrs	COs Mapped - CO2	
Mathema	Literature survey, reading a research paper, summarizing the research paper, Types of modeling: Mathematical, software, hardware modeling, the need of modeling, procedure of modeling, detailed design, and development of the project, (Activity IV)				
Unit V	Project Presentation	•	10 hrs	COs Mapped - CO4	
Presentati	on for various competitions ons, Project Report Writing, R in the project. (Activity V)				

Text Books

1. Tim Brown Change by Design How Design Thinking Transforms Organizations and Inspires Innovation, HarperCollins Publications

- 1. Andrew Shea, Bryan Boyer, Jennifer May, Mariana Amatullo, "Design for Social Innovation Case Studies from Around the World," Taylor & Francis, 2021
- 2. Jason Westland, "The Project Management Life Cycle A Complete Step-By-Step Methodology for Initiating, Planning, Executing & Closing a Project Success" Kogan Page Publication, 2007

	Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation Marks Allotted			
1	Activities I to V (4 marks for each activity)	20		

S. Y. B. Tech.						
Pattern 2022 Semester: IV(Electrical Engineering)						
		ELE222	016: Solar Photovoltaic Systems			
Teaching Sch	neme:		Credit Scheme:	Examin	ation Scheme:	
Theory: 1 hr	./week		No Credit	I	No Exam	
Prerequisite	Courses: Ap	plied Phys	sics			
Course Outc	omes: On con	mpletion o	of the course, students will be able	to-		
			Course Outcomes		Bloom's Level	
CO1	Draw variou	is curves i	related to solar PV generation.		1-Remember	
CO2	Handle software tools for solar PV systems.				4-Analyze	
CO3 Design solar P		r PV syste	V systems for small and large installations.		6-Create	
			COURSE CONTENTS			
Uni	t I	В	asics of Solar PV Systems	6 hrs.	CO1, CO2	
The PV cell, se	eries and para	llel interc	onnection, energy from the sun, in	cident ener	gy estimation,	
sizing PV, SPV	/ curves, max	imum pov	wer point tracking, and MPPT algo-	rithms.		
Unit II		D	esign of Solar PV System	6 hrs.	CO1, CO2,	
					CO3	
Software for s	Software for solar PV design, PV-battery interfaces, Peltier cooling, PV and water pumping, PV-					
grid interface-I, PV-grid interface-II, and life cycle costing.						

Books

- 1. Chamming, H. and White, R.M., "Solar Cells: From Basic to Advanced Systems", McGraw Hill Book co, 1983.
- 2. Hans S. Rauschenbach, "Solar Cell Array Design Handbook", New York, 1980.
- 3. Proceeding of IEEE Conference on Photovoltaic Specialists Conferences. https://ieeexplore.ieee.org/xpl/conhome/1000561/all-proceedings
- 4. Solar Energy Journal. https://www.sciencedirect.com/journal/solar-energy
- 5. Prof. L Umanand, "Design of Photovoltaic Systems", IISc Bangalore https://onlinecourses.nptel.ac.in/noc22 ee71/preview.

	S. Y. B. Tech. Pattern 2022 Semester: IV (Electrical Engineering) ELE222017: Power Electronics Lab						
Teaching	g Scheme:	Credit Scheme:	Examination Sch	eme:			
Practical	Practical: 4 hrs./week PR- 2 Termwork: 25Mark Practical: 50 Mark						
Prerequi	isite Courses: Analog and I	Digital circuits, Applied	Mathematics III				
Course (Outcomes: On completion of	of the course, students w	ill be able to-				
		Course Outcomes		Bloom's Level			
CO1	Simulate and analyze various power electronic converters with different control techniques			3- Apply			
CO2	Perform experiment in the group, write a lab report, and present it			3-Apply			
CO3	Analyze the results of different nower electronic converters with			4-Analyze			
CO4	Design the magnetic circuvarious power electronic	uit, power circuit, and co		6-Create			

List of Laboratory Experiments					
Sr. No.	Laboratory Experiments (Perform any 16 Experiments)	COs Mapped			
1	Static V-I Characteristics of SCR and TRIAC	CO1,CO2			
2	Static V-I Characteristics of MOSFET and IGBT	CO1,CO2			
3	Gate firing circuits of SCR (R, RC & UJT)	CO1,CO2			
4	Single-phase Half Controlled SCR Converter	CO1,CO2,CO3			
5	Single-phase Fully Controlled SCR Converter	CO1,CO2,CO3			
6	Three-phase AC-DC fully controlled bridge converter R and RL load	CO1,CO2,CO3			
7	Study of single-phase dual converter with RL loads	CO1,CO2,CO3			
8	To study DC-DC converter i) Buck converter ii) Boost converter.	CO2,CO3,CO4			
9	Buck-Boost Converter using IGBT	CO2,CO3,CO4			
10	Solar-fed boost converter	CO2,CO3,CO4			
11	Single-phase Inverter using IGBT	CO1,CO2,CO3			
12	To study the Three-phase inverter.	CO1,CO2,CO3			
13	Single-phase step-down Cyclo-converter	CO1,CO2,CO3			
14	AC Voltage regulators using SCR/TRIAC.	CO1,CO2,CO3			
15	Power Quality Analysis (Harmonic and PF measurement Converter.	CO1,CO2,CO3			
16	Performance analysis of three-phase diode clamped Multilevel inverter	CO1,CO2,CO3			
17	Simulation of i) Single phase half wave rectifier. ii) Single phase full wave fully controlled rectifier [R, R-L, and	CO1,CO2,CO3			

	RLE].	
	Simulation of the following experiments using PSIM/Matlab I. AC Voltage regulator using SCR II. Single phase inverter using self-controlled devices such as IGBT/MOSFET (Single PWM, Multiple PWM, sinusoidal PWM)	CO1,CO2,CO3
19	Simulation of the following experiments using PSIM/Matlab i) Three-phase inverter. ii) DC-DC converter a. Buck converter. b. Boost converter	CO2,CO3,CO4
	Industrial Visit to Power Electronics manufacturing unit/Renewable energy (Compulsory)	CO3,CO4

Guidelines for Laboratory Conduction

- 1. The teacher will brief the given experiment to students for its procedure, observations, calculations, and outcome.
- 2. Apparatus and equipment required for the allotted experiment will be provided by the lab technician using SOP.
- 3. Students will perform the allotted experiment in a group (2-3 students in each group) under the supervision of faculty and lab technician.
- 4. After performing the experiment students will check their readings and calculations from the teacher.
- 5. After checking they have to write the conclusion on the final results.

Guidelines for Student's Lab Journal

The write-up should include a title, aim and apparatus, circuit or block diagram, waveforms, brief theory, procedure, observations, graphs, calculations, conclusion, and questions, if any.

Guidelines for Termwork Assessment

- 1. Each experiment from the lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding, and R-3 for presentation/journal writing where each rubric carries ten marks.

S. Y. B. Tech. Pattern 2022 Semester: IV Electrical Engineering ELE222018: Electrical Network Analysis Laboratory		
Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical: 2 hrs/week	OR-1	Teamwork: 25 Marks Oral: 25 Mark

Prerequisite Courses: Fundamentals of Electrical Engineering, Application of Mathematics, and Applied Physics.

Course Outcomes: On completion of the course, students will be able to—

	Course Outcomes	Bloom's Level
CO1	Verify electrical network theorems through experiments.	3 - Apply
CO2	Perform experiment in the group, write a lab report, and present it effectively.	3 - Apply
CO3	Find electrical network parameters and evaluate them for different circuits.	4 - Analyze
CO4	Design different filters for given specifications.	6 - Create

List of Laboratory Experiments (Perform any 8 of the following)		
Experiments Title	COs Mapped	
Verification of superposition theorem in A.C. circuits. (Hardware)	CO1, CO2	
Verification of Thevenin's theorem in A.C. circuits. (Hardware)	CO1, CO2	
Verification of reciprocity theorem in A.C. circuits. (Hardware)	CO1, CO2	
Verification of Norton's theorem in A.C. circuits. (Hardware)	CO1, CO2	
Verification of Maximum Power Transfer theorem in A.C. circuits. (Hardware)	CO1, CO2	
Determination of time response of R-C circuit to a step D.C. voltage input. (Charging and discharging of a capacitor through a resistor) (Hardware)	CO2, CO3	
Determination of time response of R-L circuit to a step D.C. voltage input. (Rise and decay of current in an inductive circuit) (Hardware)	CO2, CO3	
Determination of time response of R-L-C series circuit to a step D.C. voltage input using simulation.	CO2, CO3	
Design of Low-Pass Filter and High-Pass Filter. (Software)	CO2, CO4	
Determination of parameters of Two Port Network. (Hardware)	CO2, CO3	
	Verification of superposition theorem in A.C. circuits. (Hardware) Verification of Thevenin's theorem in A.C. circuits. (Hardware) Verification of reciprocity theorem in A.C. circuits. (Hardware) Verification of Norton's theorem in A.C. circuits. (Hardware) Verification of Maximum Power Transfer theorem in A.C. circuits. (Hardware) Determination of time response of R-C circuit to a step D.C. voltage input. (Charging and discharging of a capacitor through a resistor) (Hardware) Determination of time response of R-L circuit to a step D.C. voltage input. (Rise and decay of current in an inductive circuit) (Hardware) Determination of time response of R-L-C series circuit to a step D.C. voltage input using simulation. Design of Low-Pass Filter and High-Pass Filter. (Software)	

1. The teacher will brief the given experiment to students for its procedure, observations,

calculations, and outcome.

2. Apparatus and equipment required for the allotted experiment will be provided by the lab technician using SOP.

- 3. Students will perform the allotted experiment in a group (2-3 students in each group) under the supervision of faculty and lab technician.
- 4. After performing the experiment students will check their readings and calculations from the teacher.
- 5. After checking they have to write the conclusion on the final results.

Guidelines for Student's Lab Journal

The write-up should include a title, aim and apparatus, circuit or block diagram, waveforms, brief theory, procedure, observations, graphs, calculations, conclusion, and questions, if any.

Guidelines for Termwork Assessment

- 1. Each experiment from the lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding, and R-3 for presentation/journal writing where each rubric carries ten marks.

S. Y. B. Tech. Pattern 2022 Semester: IV Electrical Engineering ELE222019: Microcontroller and Embedded Systems Lab				
Teaching	Teaching Scheme:Credit Scheme:Examination Scheme:		ie:	
Practical	tical: 2 hrs/week OR: 1 Term work: 25 Marks; Oral: 25 Marks		rks;	
Prerequi	Prerequisite Courses: Analog and Digital Circuits			
Course Outcomes: On completion of the course, students will be able to—				
	Course Outcomes		Bloom's Level	
CO1 Perform experiment in the group, write a lab report, and present it effectively		3-Apply, 4 -Analyze		
Write the program for 8051 in assembly language for the given operations		4 -Analyze		
CO3	Write the program by using the timer, interrupt, and serial ports /parallel ports.		4 -Analyze	
CO4	Interface the memory and I/O devices to the 8051 microcontroller. 6 - Create		6 - Create	

List of Laboratory Experiments			
Sr. No.	Laboratory Experiments	COs Mapped	
1	Identify various blocks of the 8051 microcontroller development board.	CO1	
2	Write an assembly language program (ALP) to perform arithmetic operations: addition, subtraction, multiplication, and division.	CO1,CO2	
3	Write an ALP to find the smallest/largest number from the given data bytes stored in internal/external data memory locations	CO1,CO2, CO3 ,CO4	
4	Write an ALP for arranging numbers in ascending /descending order stored in external memory locations	CO1,CO2, CO3 ,CO4	
5	Interface LED with microcontroller and turn it ON with microcontroller interrupt.	CO1,CO2, CO3 ,CO4	
6	Interface 7-segment display to display the decimal number from 0 to 9.	CO1,CO2, CO3 ,CO4	
7	Interface relay with microcontroller and turn it ON and OFF.	CO1,CO2, CO3 ,CO4	
8	Interface ADC with 8051 microcontroller and verify input/output.	CO1,CO2, CO3 ,CO4	
9	Interface the stepper motor to a microcontroller and rotate in a clockwise and anti-clockwise direction at the given angles.	CO1,CO2, CO3 ,CO4	
10	Industrial Visit with visit report.	CO1	
	Guidelines for Laboratory Conduction		

- The teacher will brief the given experiment to students for its procedure, observations, calculations, and outcome.
- Apparatus and equipment required for the allotted experiment will be provided by the lab

- technician using SOP.
- Students will perform the allotted experiment in a group (2-3 students in each group) under the supervision of faculty and lab technician.
- After performing the experiment students will check their readings and calculations from the teacher.
- After checking they have to write the conclusion on the final results.

Guidelines for Student's Lab Journal

The student's Lab Journal should contain the following related to every experiment:

- Title of the program
- Related Theory
- Algorithm and Flowchart
- Pin Diagram for the connection
- Result

Guidelines for Termwork Assessment

- 1. Each experiment from the lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding, and R-3 for presentation/journal writing where each rubric carries ten marks.

S. Y. B. Tech.			
Pattern 2022 Semester: IV Electrical Engineering			
ELE222020: Project-Based Learning			
Teaching Scheme:	Credit Scheme:	Examination Scheme:	
Practical: 2 hrs./week	TW: 1	Term work: 25 Marks	

Prerequisite Courses- Fundamentals of Electrical and Electronics Engineering, Mathematics I, II, and III, Soft skills.

Course Outcomes: On completion of the course, students will be able to

	Course Outcomes	Bloom's Level
CO1	Interact with different audiences in oral, visual, and written forms	2-Understand
CO2	Apply knowledge of mathematics, basic sciences, and electrical engineering fundamentals to develop solutions for the project.	3-Apply
CO3	Draw information from a variety of sources and be able to filter and summarize the relevant points.	3-Apply
CO4	Identify, formulate, and analyze the project problem and provide solutions considering social, economical, and environmental aspects	5-Evaluate

Guidelines for Project-Based Learning Conduction

A group of 4-5 students will be assigned to a faculty member called a mentor. Based on the engineering knowledge of a group and societal and industry problems, the mentor has to guide a group to identify project problems and plan the work schedule. Here, the expected outcomes of the project must be noted. The complete work plan should be divided into the form of individual tasks to be accomplished with targets. Weekly review of the completed task should be taken and further guidelines are to be given to a group. The final activity will be to present the work completed and to submit the report. A group should be promoted to participate in a competition or write a paper.

A problem needs to refer back to a particularly practical, scientific, social, and/or technical domain. The problem should stand as one specific example or manifestation of more general learning outcomes related to knowledge and/or modes of inquiry. There are no commonly shared criteria for what constitutes an acceptable project. Projects vary greatly in the depth of the questions explored, the clarity of the learning goals, the content, and the structure of the activity. It may have

- 1. A few hands-on activities may or may not be multidisciplinary.
- 2. Use of technology in meaningful ways to help them investigate, collaborate, analyze, synthesize, and present their learning.

Activities on solving real-life problems, investigation /study, and writing reports of in-depth study, and fieldwork.

Guidelines for Assessment and Evaluation

Assessment:

The mentor is committed to assessing and evaluating both students' performance and course effectiveness. The progress of PBL is monitored regularly every week. During the process of monitoring, continuous assessment, and evaluation the individual and team performances are to be measured by the supervisor /mentor and authorities.

Evaluation:

All the activities are to be recorded in a PBL workbook regularly. Regular assessment of work to be

done and proper documents are to be maintained at the department by both students as well as a mentor. Continuous Assessment Sheet (CAS) is to be maintained by all mentors.

Evaluation will have parameters like idea development suggestive solutions, hardware and software development, report writing, and presentation.

Term Work Guidelines	Marks Allotted
PBL Review I (After 5 th week)	10
PBL Review II (After the 10 th week)	10
Final documentation and demonstration	5
(Before End-sem exam)	
Total Marks	25