

F. Y. B. Tech. Pattern 2022 Semester: I					
	FYE221001: Applied Mathematics-I				
Teaching	Yeaching Scheme:Credit Scheme:Examination Scheme:				
Theory :	04hrs/week	04	Continuous Comp	rehensive	
Tutorial	01hr/week	01	Evaluation: 20Ma	rks	
			InSem Exam: 20N	larks	
			EndSem Exam: 60	Marks	
			Tutorial / Termwo	ork: 25Marks	
Prerequi	site Courses: -				
Course (Dutcomes: On completion of	of the course, students wil	l be able to-		
		Course Outcomes		Bloom's Level	
CO1	Interpret the concepts of . form, transformations, Ei	Jacobians, rank, quadratic gen values, Eigen vectors	c form, canonical and probability.	2-Understanding	
CO2	Solve problems on linear	algebra, partial derivative	es and probability.	3- Apply	
CO3	Apply concepts of linear to engineering problems.	algebra, differential calcu	lus and probability	3- Apply	
CO4	Use computational tools	for solving mathematical	problems.	3- Apply	
CO5	Analyze the nature of quadratic forms, extreme values of the function, error and approximations.			4 -Analyze	
		COURSE CONTENT	Ś		
Unit I	Matrices and Linear S	ystem of Equations	(07hrs+	COs Mapped -	
			2hrsTutorial)	CO1, CO2, CO3	
Rank of a and ortho	matrix, system of linear Ec gonal transformations, App	luations, Linear Depende lication to system of linear	nce and Independend ar equations.	ce of vectors, Linear	
Unit II	Eigen Values and	Eigen Vectors	(08hrs+ 2hrsTutorial)	COs Mapped - CO1, CO2, CO3, CO5	
Eigen val canonical	ues & Eigen vectors, diagon forms, applications of Eige	nalization, quadratic form on values and Eigenvector	s and reduction of quest.	uadratic forms to	
Unit III	Partial Diffe	rentiation	(07hrs+ 2hrsTutorial)	COs Mapped – CO2, CO3	
Introduct Homoger	ion to functions of two or m eous Functions, Partial diff	ore variables, Partial Differentiation of Composite	ferentiation, Euler's and Implicit function	Theorem on ns, Total	
derivatives.					
Unit IV	Application of Parti	al Differentiation	(07hrs+ 2hrsTutorial)	COs Mapped - CO1, CO2, CO3, CO5	
Jacobians, Functional Dependence & Independence, Errors and Approximation, Maxima and Minima of Functions of two variables, Lagrange's method of undetermined multipliers.					
Unit V	Introduction to Proba	bility and Counting	(07hrs+	COs Mapped -	

	2hrsTutorial)	CO1, CO2, CO3

Interpreting probabilities, Relative frequency and classical definition of probability, sample spaces and Events, mutually exclusive events, Permutations and Combinations, Axioms of probability, Addition rule, conditional probability, multiplication rule, Independent Events, Bayes' Theorem.

TextBooks

1. B.V. Ramana, "Higher Engineering Mathematics", Tata McGraw-Hill.

2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publication, Delhi.

Reference Books

 Erwin Kreyszig ,"Advanced Engineering Mathematics", Wiley Eastern Ltd.
 P. N. Wartikar and J. N. Wartikar, "Applied Mathematics" (Volumes I and II), Pune Vidyarthi Griha Prakashan, Pune.

Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Alloted	
1	Assignments (Total 3 Assignment, Unit I and II 20 marks, Unit III and IV 20 marks and Unit V 10 marks &50 marks will be converted to 10 Marks)	10	
2	Tests on each unit using LearniCo (Each test for 15 M and total will be converted out of 10 M)	10	

List of Tutorial Assignments			
Sr. No.	Title	CO Mapped	
1	Examples on rank of a matrix, system of linear Equations	CO1, CO2	
2	Examples on linear dependence and Independence of vectors, application to system of linear equations.	CO1, CO2, CO3	
3	Examples on Eigen values & Eigen Vectors.	CO1, CO2, CO3	
4	Examples quadratic forms to canonical forms.	CO1, CO2, CO3,CO5	
5	Solve problems on matrices using Matlab.	CO1, CO2, CO4	
6	Solve system of equations using Matlab.	CO1, CO2, CO4	
7	Examples on partial differentiation, Euler's Theorem on homogeneous functions	CO2, CO3	
8	Examples on partial differentiation of composite and implicit functions, total derivatives.	CO2, CO3	
9	Examples on Jacobians, functional dependence & independence, errors and approximation	CO1, CO2, CO3 , CO5	
10	Examples on maxima and minima of functions of two variables, Lagrange's method of undetermined multipliers.	CO1, CO2, CO3, CO5	
11	Examples on fundamental concepts of probability.	CO1, CO2	
12	Examples on conditional probability, Bayes' Theorem.	CO1, CO2, CO3	

Guidelines for Tutorial / Termwork Assessment			
Sr. No.	Components for Tutorial / Termwork Assessment	Marks Allotted	
1	Assignment on computational software	5	
2	Tutorial (Each tutorial carries 15 marks)	15	
3	Attendance (Above 95 % : 05 Marks, below 75% : 0 Marks)	5	

F. Y. B. Tech. Pattern 2022 Semester: II FYE 221002: Applied Mathematics-II				
Teaching	ching Scheme: Credit Scheme: Examination Scheme:			
Theory : 04hrs/week Tutorial: 01hr/week		04 01	Continuous Comp Evaluation: 20Ma InSem Exam: 20M EndSem Exam: 60 Tutorial / TermW	rehensive rks Iarks)Marks ork: 25Marks
Prerequi	isite Courses: -			
Course (Dutcomes: On completion of	f the course, students v	vill be able to-	
		Course Outcomes		Bloom's Level
CO1	Explain types of different integrals.	ial equations, finite dif	ferences and multiple	2- Understanding
CO2	Solve problems on differe	ential equations and mu	Itiple integrals.	3- Apply
CO3	Apply concept of numeric calculus to engineering particular to enginee	cal methods, differentia coblems.	al and multivariate	3- Apply
CO4	Use computational tools for solving mathematical problems. 3- Apply			
CO5	Analyze the solution of differential equations, numerical differentiation & integration and multiple integrals.4- Analyze			4- Analyze
		COURSE CONTEN	NTS	
Unit I	Differential Equa	ations (DE)	8hrs+ 2hrsTutorial	COs Mapped - CO1, CO2, CO3
Formatio Different	n of differential equations E ial equation reducible to line	xact DE, equations red ear form.	ucible to exact form, L	inear DE and
Unit II	Applications of Differ	ential Equations	7hrs+ 2hrsTutorial	COs Mapped - CO1, CO2, CO3, CO5
Applicati Electrica	on of DE to Orthogonal traj l Circuits, Motion under Gra	ectories, Newton's Law wity, Rectilinear Motic	v of Cooling, Kirchhof on, Heat flow.	f's Laws of
Unit III	Finite differences and	d Interpolation	7hrs+ 2hrsTutorial	COs Mapped – CO1, CO3 , CO5
Finite differences, differences of polynomials, relations between the operators, Newton's interpolation formula, Stirling's formula, Lagrange's Interpolation formula.				
Unit IV	Numerical Differentiation	on and Integration	7hrs+2hrsTutorial	COs Mapped - CO1, CO3, CO5
Numerical Differentiation : Euler's method, Euler's Modified Method, Runge- Kutta fourth order, Predictor- Corrector Method. Numerical Integration: Trapezoidal rule. Simpson's 1/3 rd and 3/8 th rule.				
Unit V	Multiple Integrals and	their Applications	7hrs+2hrsTutorial	COs Mapped -

	CO1, CO2, CO3,CO5

Double and Triple integrations, applications to area, volume, mean and root mean square values and Center of Gravity.

TextBooks

1.M.K. Jain, R.K.Jain, Iyengar, "Numerical Methods for scientific and engineering computation" (New age International)

2. B. S. Grewal ,"Higher Engineering Mathematics" Khanna Publication, Delhi.

Reference Books

1. Erwin Kreyszig ,"Advanced Engineering Mathematics" ,Wiley Eastern Ltd.

2. P. N. Wartikar and J. N. Wartikar," Applied Mathematics" (Volume I and II), Pune Vidyarthi Griha Prakashan, Pune.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Assignments	10		
	(Total 3 Assignment, Unit I and II 20 marks, Unit III and IV 20 marks			
	and Unit V 10 marks &50 marks will be converted to 10 Marks)			
2	Tests on each unit using LearniCo	10		
	(Each test for 15 M and total will be converted out of 10 M)			

List of Tutorial Assignments			
Sr. No.	Title	COs Mapped	
1	Examples on formation of differential equations exact DE.	CO1, CO2	
2	Examples on linear DE and reducible to linear differential equations.	CO1, CO2	
3	Examples on application of DE to Orthogonal trajectories, Newton's Law of cooling.	CO1, CO2, CO3,CO5	
4	Examples on Electrical Circuits, motion under gravity, Rectilinear Motion.	CO1, CO2, CO3,CO5	
5	Solving differential equation using Matlab.	CO1, CO2, CO4	
6	Examples on finite differences, differences of polynomials, relations between the operators.	CO1, CO3	
7	Examples on Newton's interpolation formula, Stirling's formula, Lagrange's Interpolation formula.	CO1, CO3 , CO5	
8	Solve ordinary differential equations using Numerical Methods.	CO1, CO3 , CO5	
9	Solve definite integration using Numerical Methods.	CO1, CO3 , CO5	
10	Solving differential equation and definite integrals using Matlab.	CO1, CO2, CO4	
11	Examples on double and triple integrations.	CO1, CO2, CO3	
12	Examples on applications of double and triple integration.	CO1, CO2, CO3, CO5	

Guidelines for Tutorial / Termwork Assessment			
Sr. No.	Components for Tutorial / Termwork Assessment	Marks Allotted	
1	Assignment on computational software	5	
2	Tutorial (Each tutorial carries 15 marks)	15	
3	Attendance (Above 95 % : 05 Marks, below 75% : 0 Marks)	5	

	F. Y. B. Tech.			
Pattern 2022 Semester: I / II				
FYE221003: Applied and Modern Physics (A) (Croup A – Computer JT, F&TC, AL&DS & CSD)				
	(Group C - Electrical Engg., Robotics & Automation)			
Teaching Scheme: Credit Scheme: Examination Scheme:				
Theory :	Theory :03 hrs/week03Continuous Comprehensive			prehensive
Practical	: 02 hrs/week	01	Evaluation: 20M	arks
		InSem Exam: 2011		Marks
			Termwork: 50M	arks
Prerequi	site Courses, if any: -			
Course (Dutcomes: On completion of	f the course, students wil	l be able to-	
		Course Outcomes		Bloom's Level
CO1	Describe basics of electro wave mechanics and envi	magnetics, advanced mar ronmental energy	terials, wave optics	1-Knowledge
CO2	Classify advanced materi	als, refracting crystals and	d solar cell	2-Understand
CO3	Explain properties of superconductors, nano-materials and matter waves 2-Understand			
CO4	Calculate characteristics of electromagnetic circuits and optical devices conductivity officiency of solar and wind never unit			
CO-	Use concepts of electromagnetic effect, semiconductors, wave optics			
C05	and wave equations in rea	al life problems	· •	3-Apply
COURSE CONTENTS				
Unit I	Unit IElectromagnetism & Electromagnetic Waves(08hrs)COs Mapped -CO1CO2			
Electron	nagnetism•			01,02
Introduction: Magnetic effect of an electric current, cross and dot conventions, right hand thumb rule,				
nature of	magnetic field of long stra	ight conductor, solenoid	and toroid. Conce	pt of mmf, flux, flux
density, r	eluctance, permeability and	field strength, their units	and relationships.	
Simple so	eries magnetic circuit, Intro	duction to parallel mag	netic circuit, compa	arison of electric and
magnetic	circuit, force on current car	rying conductor placed in	n magnetic field.	
Faradays	laws of electromagnetic	nduction, Fleming right	hand rule, statica	lly and dynamically
Induced e	e.m.f., self and mutual indu	ctance, coefficient of cou	iplings. Energy stor	red in magnetic field;
Fleetron	ert nand rule.			
Introduct	ion Flectromagnetic Wave	s Electromagnetic Wave	Faultions Maxwe	ell's Wave Equations
for Free Space				
Unit II	Semiconductors, Superco Material	nductivity, Nano-	(06hrs)	COs Mapped - CO1, CO2, CO4, CO5
Semicon	ductors:			
Types of	Types of semiconductor, Conductivity of conductors and semiconductors, temperature dependence of			
conductiv	vity, Fermi Dirac distributi	on function, Position of	f Fermi level in ir	trinsic and extrinsic

semiconductors, variation with respect to temperature and doping concentration, Hall effect: Derivation for Hall voltage, Hall coefficient, applications of Hall effect.

Superconductivity:

Definition, Properties, type of superconductor, Josephson effect and applications

Nano-Materials:

Introduction, quantum confinement effect, surface to volume ratio, properties: Optical, electrical & Mechanical.

Unit	Wave Optics	(08hrs)	COs Mapped -
III			CO1, CO2, CO4,
			CO5

Polarization – Introduction of polarization, law of Malus, double refraction, Huygens theory, LCD. **Diffraction** – Introduction of diffraction, types of diffraction, diffraction grating, conditions for principal maxima and minima, maximum orders of diffraction, Rayleigh's criterion,

Interference – Introduction, thin film interference, optical flatness testing, antireflection coating, Rayleigh interferometer and Radio interferometer.

Laser: Basic terms and types of lasers, application (IT, Medical & Industry), laser interferometer and Hologram Interferometer.

Optical Fibre – Introduction and basic terms, Fibre optic communication with block diagram.

-			ę
Unit IV	Quantum Mechanics & Quantum Computing	(07hrs)	COs Mapped - CO1, CO2, CO3,
			CO5

Basics of Quantum theory, postulates of quantum mechanics, wave nature of particles, wave function, Schrodinger's time dependent equation, Stern-Gerlach experiment, electron spin, superposition of states, Entanglement Bits and Qubits, Implementing a quantum computer : Ion trap, Linear optics, NMR and superconductors.

Unit V	Energy and Environment	(07hrs)	COs Mapped -
			CO1, CO2, CO4

Energy and its Usage:

Overview of World energy scenario, climate change, Engineering for energy conservation, units and scales of energy.

Solar Energy:

Introduction to solar energy, fundamentals of solar radiation and its measurement aspects, basic physics of solar cell, carrier transport, generation & recombination in solar cell, semiconductor junctions: metal-semiconductor junction & p-n junction, essential characteristics of solar photovoltaic devices, First generation solar cells, Second generations of Solar cells, Third generations of solar cells-Quantum Dot solar cell, multi junction solar cells

Fluid and Wind Power:

Fluid dynamics and power in the wind, available resources, Wind turbine dynamics, wind farms

Text Books

- 1. V K Mehta and Rohit Mehta,"Basic Electrical Engineering", S Chand Publications.
- 2. M.N. Avadhanulu and P.G. Kshirsagar, "Engineering Physics ", S. Chand Publications
- 3. Robert L. Jaffe and Washington Tayler, "The Physics of Energy", Cambridge University Press

Reference Books

- 1. H.D. Young and R.A. Freedman, "University Physics", Pearson Publication
- 2. Resnick and Halliday, "Principles of Physics", John Wiley and Sons
- 3. Jenkins and White , "Optics" , Tata McGraw Hill
- 4. Noson S. Yanofsky and Mirco A. Mannucci, "Quantum computing for computer scientists".

Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted	
1	Three Assignments on unit-1, Unit-2, Unit-3 & 4	05	
2	Group Presentation on Unit-5	10	
3	LearniCo Test on Each Unit	05	
	Total	20	

List of Laboratory Experiments / Assignments			
Sr. No.	Laboratory Experiments / Assignments	CO Mapped	
1	Experiment based on Newton's rings (determination of wavelength of monochromatic light, determine radius of curvature of plano-convex lens).	CO1, CO5	
2	To determine position of diffraction minima by studying diffraction at a single slit.	CO4	
3	To determine unknown wavelength by using plane diffraction grating.	CO4	
4	To verify Law of Malus.	CO4, CO5	
5	Experiment based on Double Refraction (Determination of refractive indices / Identification of types of crystal).	CO1, CO5	
6	To determine band gap of given semiconductor.	CO4	
7	To study IV characteristics of Solar Cell and determine parameters (fill factor and efficiency).	CO4	
8	To determine Hall coefficient and charge carrier density.	CO4, CO5	
9	Experiment based on Laser (Determination of thickness of wire / Number of lines on grating surface).	CO4	
10	Determination of refractive index using Brewster's law.	CO4	
11	To determine magnetic force on a current carrying conductor.	CO4, CO5	
12	To study magnetic induction due to current carrying conductor	CO4, CO5	
13	To study the quantum confinement effect in synthesis of silver nano- particles.	CO3, CO5	
Guidelines for Laboratory Conduction			

1. Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.

2. Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.

3. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.

4. After performing the experiment students will check their readings, calculations from the teacher.5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

F. Y. B. Tech.					
FYE221004: Applied and Modern Physics (B)					
— 11	(Group B- Mech	nanical Engg., Civil Eng	g., Chemical E	ngg.)	
Teaching Scheme: Credit Scheme: Examination Scheme:					
Theory :03hrs/week03Continuous ComprehensivePractical : 02hrs/week01Evaluation: 20MarksInSem Exam: 20MarksInSem Exam: 20MarksEndSem Exam: 60MarksTermWork: 50Marks		ensive s rks			
Prerequi	isite Courses, if any: -				
Course (Dutcomes: On completion of	of the course, students will	ll be able to–		
		Course Outcomes			Bloom's Level
CO1	Describe basics of mecha environmental energy	nics, advanced materials	, wave optics and	d	1-Knowledge
CO2	Classify motions is kinen and solar cell	natics, advanced material	s, refracting crys	stals	2-Understand
CO3	Explain properties of superconductors and nano-materials2-Understand				
CO4	Calculate parameters in kinematics, conductivity, efficiency of solar and wind power unit 3-Apply				
CO5	CO5 Use knowledge of Laws of kinematics, semiconductors and wave optics in real life problems 3-Apply			3-Apply	
		COURSE CONTENT	ſS		
Unit I	Kinematics of Rectilinear Motion(7hrs)COs Mapped – CO1, CO2, CO4		apped – CO2, CO4		
Basic co accelerat	ncepts, equations of motio ion and motion curves. Rela	n for constant accelerati tive motion and depende	ion and motion nt motion.	under g	cavity. Variable
Unit II	Kinematics of Cur	vilinear Motion	(7hrs)	COs M CO1,C	apped - O2,CO4
Basic con motion.	ncepts, Equation of motion	in Cartesian Co-ordinate	s. Path and pola	r co-ordi	nates. Projectile
Unit III	Semiconductors, Superconductivity, Nano- Material(7hrs)COs Mapped – CO1, CO2, CO4, CO5				
Semiconductors: Types of semiconductor, Conductivity of conductors and semiconductors, temperature dependence of conductivity, Fermi Dirac distribution function, Position of Fermi level in intrinsic and extrinsic semiconductors, variation with respect to temperature and doping concentration, Hall effect: Derivation for Hall voltage, Hall coefficient, applications of Hall effect. Superconductivity: Definition, Properties, type of superconductor, Josephson effect and applications					

Superconductivity: Definition, Properties, type of superconductor, Josephson effect and applications **Nano-Materials:** Introduction, quantum confinement effect, surface to volume ratio, properties: Optical, Electrical & Mechanical.

Unit	Wave Optics	(8hrs)	COs Mapped - CO1,
IV			CO2, CO4, CO5

Polarization – Introduction of Polarization, Law of Malus, Double Refraction, Huygens Theory, LCD.

Diffraction – Introduction of Diffraction, types of diffraction, Diffraction grating, conditions for principal maxima and minima, Maximum orders of diffraction, Rayleigh's Criterion,

Interference – Introduction, Thin film Interference, optical flatness testing, Antireflection coating, Rayleigh Interferometer and Radio Interferometer.

Laser: Basic terms and types of lasers, Application (IT, Medical & Industry), Laser interferometer and Hologram Interferometer.

Optical Fibre – Introduction and basic terms, Fibre optic communication with block diagram.

Unit V	Energy and Environment	(7hrs)	COs Mapped -
			CO1,CO2,CO4

Energy and its Usage

Overview of World Energy scenario, climate change, Engineering for Energy conservation, units and scales of energy.

Solar Energy:

Introduction to solar energy, fundamentals of solar radiation and its measurement aspects, basic physics of solar cell, carrier transport, generation & recombination in solar cell, semiconductor junctions: metal-semiconductor junction & p-n junction, Essential characteristics of solar photovoltaic devices, First Generation solar cells, Second Generations of Solar cells, Third generations of solar cells-Quantum Dot solar cell, multi junction solar cells.

Fluid and Wind Power

Fluid dynamics and power in the wind, available resources, Wind turbine dynamics, wind farms

Text Books

1. M.N. Avadhanulu and P.G. Kshirsagar, "Engineering Physics", S. Chand Publications

- 2. R. C. Hibbeler, "Engineering Mechanics", Pearson Education
- 3. Robert L. Jaffe and Washington Tayler, "The Physics of Energy", Cambridge University Press

Reference Books

1. H.D. Young and R.A. Freedman, "University Physics", Pearson Publication

2 Jenkins and White, "Optics", Tata Mcgraw Hill

3. S. P. Timoshenko and D. H. Young, "Engineering Mechanics", McGraw-Hill publication

4. J. L. Meriam and Craige, "Engineering Mechanics", John Willey

Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted	
1	Three Assignments on unit-1, Unit-2, Unit-3 & 4	05	
2	Group Presentation on Unit-5	10	
3	LearniCo Test on Each Unit	05	
	Total	20	

List of Laboratory Experiments / Assignments		
Sr. No.	Laboratory Experiments / Assignments	COs Mapped
1	Experiment based on Newton's rings (determination of wavelength of monochromatic light, determine radius of curvature of plano-convex lens).	CO1, CO5
2	To determine position of diffraction minima by studying diffraction at a single slit.	CO4
3	To determine unknown wavelength by using plane diffraction grating.	CO4
4	To verify Law of Malus.	CO4, CO5
5	Experiment based on Double Refraction (Determination of refractive indices / Identification of types of crystal).	CO1, CO5
6	To determine band gap of given semiconductor.	CO4
7	To study IV characteristics of Solar Cell and determine parameters (fill factor and efficiency).	CO4
8	To determine Hall coefficient and charge carrier density.	CO4, CO5
9	Experiment based on Laser (Determination of thickness of wire / Number of lines on grating surface).	CO4
10	Determination of refractive index using Brewster's law.	CO4
11	Draw velocity diagram of four bar mechanism.	CO2, CO4
12	To determine the angular acceleration of flywheel	CO2, CO4
13	To study the quantum confinement effect in synthesis of silver nano- particles.	CO3, CO5
	Guidelines for Laboratory Conduction	
 Teache outcome Appara assistants 	er will brief the given experiment to students its procedure, observations of this experiment. atus and equipments required for the allotted experiment will be prov using SOP.	calculation, and ided by the lab
 Studen supervision After p 	its will perform the allotted experiment in a group (two students in each g on of faculty and lab assistant. performing the experiment students will check their readings, calculations fur backing they have to write the conclusion of the final result.	group) under the rom the teacher.
J. Alter C	Guidelines for Student's Lab Journal	
Write-up	should include title, aim, diagram, working principle, procedure, obser	rvations, graphs,

Guidelines for Termwork Assessment

Each experiment from lab journal is assessed for thirty marks based on three rubrics. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

F. Y. B. Tech. Pattern 2022 Semester: I/II FYE221005: Applied Chemistry					
Teaching	Teaching Scheme:Credit Scheme:Examination Scheme:				
Theory : 03hrs/week Practical : 02hrs/week		03 01	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks TermWork: 50Marks		ensive s rks
Prerequi	site Courses, if any: -				
Course (Dutcomes: On completion o	f the course, students wil	l be able to-		
		Course Outcomes			Bloom's Level
CO1	Describe different technic fuel, polymer, alloys.	ues used for chemical er	ntities present in fl	uids,	1-Knowledge
CO2	Select appropriate technology involved in determination of purity and 2- Understand properties of material.				2- Understand
CO3	Illustrate causes and preventive measures of ill effect of hard water and corrosion 3-Apply				3-Apply
CO4	Analyse the fluids, fuels and selection of appropriate purification3-Applymethods.3-Apply			3-Apply	
CO5	O5 Compare composition of fuels, purity of water and mitigation for 4-Analyze corrosion control		4-Analyze		
COURSE CONTENTS					
Unit I	Cells, Batteries and Elect Techniques	ro analytical	(8hrs)	COs r CO1,	napped- CO4
Introduction: Dry cell, alkaline battery, Ni-Cd battery, H ₂ O ₂ fuel cells, Lithium ion battery. Reference electrode (calomel electrode), ion selective electrode (combined glass electrode). Conductometry: Introduction, conductometric titrations of acid versus base with titration curves (SA-SB). pH metry: Introduction, standardization of pH meter, pH metric titration of strong acid versus strong base with titration curve. UV-Visible Spectroscopy: Introduction, interaction of electromagnetic radiation with matter, statement of Beer's law and Lambert's law, different electronic transitions, terms involved in UV- visible Spectroscopy.					
Unit II	Fuels		(8hrs)	COs r CO1,	napped- CO4, CO5
Introduction, classification, Calorific value (CV): Gross calorific value (GCV) and Net calorific value (NCV), Determination of Calorific value: Bomb calorimeter, Solid fuel: Coal: Analysis of Coal- Proximate and Ultimate analysis, Liquid fuel: Petroleum: Refining of petroleum, CNG, Hydrogen gas as a fuel. Alternative fuels: Power alcohol, biodiesel and Rocket propellants, Knocking in engines, octane number and cetane number.COs mapped- CO1,UnitIntroduction to Engineering Materials(8hrs)COs mapped- CO1,					

III	CO2
-----	-----

Solid: crystalline and amorphous solids, Polymorphism, unit cell, crystal system-cubic, APF. Metallurgy-Ores and Minerals, Alloys- classification. Composition, woods metal, brass, Bronze, Tialloys. Preparation of alloys by fusion and powder method. Introduction of polymer: Terms-Speciality polymers: Introduction, structure, properties and applications of the polymers:

1. Bio-degradable polymers: Poly (hydroxybutyrate-hydroxyvalanate),

2. Conducting and doped conducting Polymer: Polyacetylene

3.Polymer Composite,

Nanomaterials: Introduction, definition, classification of nanomaterials based on dimensions, properties and general applications.

Unit IV	Analytical Aspects of Fluids	(8hrs)	COs mapped- CO1, CO2, CO3,
			CO4, CO5

Properties of Fluids-Surface Tension, Capillary action, Viscosity, Vapour Pressure, Types of Fluid Liquid Fluid- Water and Oil

Water: hardness of water: Types, Determination of hardness by EDTA method, Chloride content in water by Mohr's method, Ill effects of hard water in boiler, External Treatment of water i) Zeolite method ii) Demineralization method. Purification of water: Reverse osmosis.

Oil: Aniline point, Flash Point, Fire point.

Gaseous fluids: Gas Sensors, Types of Gas sensors

Unit V	Corrosion Science	(8hrs)	COs mapped-
			CO3, CO5

Introduction, Types of corrosion – Dry and Wet corrosion, mechanism, nature of oxide films and Pilling-Bedworth's rule, hydrogen evolution and oxygen absorption, Factors influencing rate of corrosion. Methods of corrosion control: cathodic protection, Metallic coatings and its types, Galvanizing and Tinning, Electroplating, Powder coating.

Text Books

1. O.G. Palanna, "Engineering Chemistry", Tata Magraw Hill Education Pvt. Ltd.

2. Dr. S. S. Dara, Dr. S. S. Umare, "Textbook of Engineering Chemistry", S. Chand & Company Ltd.

Reference Books

1. Wiley Editorial, "Engineering Chemistry", Wiley India Pvt.Ltd

2. Shriver and Atkins, "Inorganic Chemistry", 5ed, Oxford University Press,

3. S. M. Khopkar, "Basic Concept of Analytical Chemistry", 2ed, New Age-International Publisher

Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted	
1	Assignment on Unit 1 & 2	05	
2	Group presentations on Unit 3/4/5	10	
3	LearnCo test on each unit	05	

List of Laboratory Experiments / Assignments			
Sr. No.	Laboratory Experiments / Assignments	COs	
		Mapped	
1	Daniel Cell	CO1	
2	To determine strength of strong acid using conductometer.	CO2	
3	To determine maximum wavelength of absorption and find unknown concentration of given sample by colorimeter.	CO4	
4	Determine the calorific value of given solid fuel by using Bomb calorimeter.	CO2	
5	Proximate analysis of coal.	CO5	
6	To determine hardness of water by EDTA method	CO4	
7	Estimation of chloride content by Mohr's method	CO4	
8	Estimation of Cu from given brass alloy	CO4	
9	ECE - To coat copper and zinc on iron plate using electroplating.	CO1	
10	Preparation of nanomaterials.	CO1	
11	Preparation of biodiesel from oil.	CO1	
12	To determine alkalinity of water	CO5	
Guidelines for Laboratory Conduction			

1. Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.

2. Apparatus, chemicals, solutions and equipments required for given experiment will be provided by the lab assistants using SOP.

3. Students will perform the same experiment in a group (two students in each group) under the supervision of faculty and lab assistant. After performing the experiment students will check their readings, calculations from respective teacher.

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Term work Assessment

Each experiment from lab journal is assessed for thirty marks based on three rubrics. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

F. Y. B. Tech. (All Branches) Pattern 2022 Semester: I / II FYE221006: Fundamentals of Electrical Engineering					
Teaching	Teaching Scheme:Credit Scheme:Examination Scheme:				
Theory:03hrs/week Practical: 02hrs/week		03 01	Continuous Con Evaluation : 20N InSem Exam: 20 EndSem Exam: Termwork: 50N	npre Mark DMai 60Ma farks	hensive s ks arks s
Prerequi	site Courses: -				
Course (Dutcomes: On completion of	f the course, students will	l be able to-		
		Course Outcomes			Bloom's Level
CO1	Define terminologies a and batteries.	and laws related to AC-D	C circuits, machine	es	1-Remember
CO2	Demonstrate the need components and instru	for safety precautions and ments in the laboratory.	d procedures,		2-Understand
CO3	Elaborate construction	, working and performan	ce characteristics of	of	2-Understand
CO4	Solve problems on AC	2-DC circuits, work, power	er and energy using	nd energy using 3-Apply	
CO5	Select appropriate mad applications.	chines, protective devices	for a given	r a given 3-Apply	
CO6	Calculate and analyze	transformer efficiency, re	egulation and LT, I	HT	4-Analyze
		COURSE CONTENT	ſS		
Unit I	Work, Power, Energy,	Batteries and Supplies	(8hrs)	CC CC	Os mapped - D1, CO4
 Work, Power, Energy: Effect of temperature on resistance, resistance temperature coefficient, insulation resistance, conversion of energy from one form to another in electrical, mechanical, and thermal systems. Batteries and Power Supply: Charging and discharging of batteries, the concept of depth of charging, maintenance of batteries, series-parallel connection of batteries, Introduction to UPS, SMPS 					
Unit II	DC ci	rcuits	(8hrs)	CC CC	Os mapped - D1, CO4
Types of electrical circuits, KVL and KCL, sources and source transformations, star-delta connection, Superposition, and Thevenin's theorem					
Unit III	AC Ci	rcuits	(8hrs)	CC CC	Os mapped - D1, CO4
Representation of sinusoidal waveforms, peak and RMS values, Phasor representations, real power, reactive power, apparent power, power factor, analysis of single-phase AC circuits consisting of pure R, L, C, series R-L, R-C, R-L-C combinations, parallel AC circuit, series, and parallel resonance					
Unit	Three-phase circuits and	1 Electrical Installation	s (8hrs)		Js mapped -

IV		CO3, CO4, CO5

Three-Phase Circuit: Three-phase balanced circuits, voltage and current relations in star and delta connections, and power calculations.

Electrical Installations: Components of LT Switchgear: fuse MCB, ELCB, types of wiring, earthing.

Unit V	Electrical Machines	(8hrs)	COs mapped - CO1, CO3, CO5,
			CO6

Transformers: Construction, principle, e.m.f. equation, ideal and practical transformer, vector diagram for ideal transformer, losses, regulation and efficiency, Introduction to Auto-transformer. Electrical machines: Construction, working principle and types of DC generator and motor, construction, working principle and applications of stepper motor.

Text Books

1. B.L. Theraja, A. K. Theraja, "A Textbook of Electrical Technology" - Volume I: Basic Electrical Engineering: Part 1 and 2. S Chand Publication.

2. Bharti Dwivedi, Anurag Tripathi, "Fundamentals of Electrical Engineering", 2nd Edition, Wiley Publication.

Reference Books

1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.

E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
 H. Cotton, "Electrical Technology", 7th Edition, CBS Publications and distributors.

Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted	
1	Assignment 1 – (Units 1 to 2, before the in-semester exam)	4 Marks	
2	Assignment 2 – (Units 3 to 4, after in-semester exam)	4 Marks	
3	Minimum 10 LearniCo sessions (taking best 5)	4 Marks	
4	Class Test – (Units 3 to 5, before end-semester exam)	8 Marks	

List of Laboratory Experiments				
Sr. No.	Sr. No. Laboratory Experiments			
1	To introduce basic safety precautions, introduction and use of measuring instruments, like voltmeter, ammeter, multi-meter, oscilloscope, etc., the practical relevance of resistors, capacitors and inductors.	CO2		
2	To analyze the effect of temperature on resistance of conducting material and measure the insulation resistance of cable/equipment using Megger	CO2		
3	To study LT and HT electricity bills and energy conservation	CO6		
4	To demonstrate different types of electrical protection equipment such as fuses, MCB, MCCB, ELCB	CO3, CO5		
5	To verify Thevenin's Theorem on DC supply	CO1, CO4		
6	To analyze series RL and RC circuits on single phase AC supply.	CO4		
7	To find efficiency and regulation of single-phase transformer at different loading conditions.	CO6		

8	To determine the relationship between phase and line quantities for a three- phase AC circuit when the load is star and delta connected.	CO4
9	To demonstrate the construction and working of electrical machines.	CO3, CO5
	Guidelines for Laboratory Conduction	
\triangleright	In each laboratory session, four to five students will perform the experiment i	n a group.
\triangleright	Students should do connections under the supervision of the teachers and ge	t the results by
	following safety precautions and procedures.	
	Guidelines for Student's Lab Journal	
The St	udent's Lab Journal should contain the following -	
\triangleright	Apparatus with their detailed specifications.	
\succ	Connection diagram /circuit diagram.	
\succ	Observation table/ simulation waveforms.	
\succ	Sample calculations for one/two readings.	
\succ	Result table, Graph and Conclusions.	
\checkmark	Few short questions related to the experiment.	
	Guidelines for Term Work Assessment	
1. Th	e student's termwork will be through continuous assessment.	
2. Ea	ch experiment from lab journal is assessed for thirty marks based on three rubr	rics.
Ru	bric R-1 for timely completion, R-2 for understanding and R-3 for presentation	n/journal
wr	ting where each rubric carries ten marks.	

F. Y. B. Tech.					
Pattern 2022 Semester: I / II					
	FYE221007: Fundamentals of Electronics Engineering				
Teaching	Ceaching Scheme:Credit Scheme:Examination Scheme:				
Theory :03hrs/week		03	Continuous Com	orehensive	
Practical : 02hrs/week		01	Evaluation: 20Ma	arks InSem Exam:	
			20Marks		
			EndSem Exam: 6	0Marks	
			TermWork: 50Ma	arks	
Prerequis	site Courses, if any: Semico	onductor Theory, Mathem	natics		
Course O	Outcomes: On completion of	f the course, students will	be able to-		
		Course Outcomes		Bloom's Level	
CO1	Describe the working of OpAmp.	of semiconductor diodes,	transistors and	2- Understand	
CO2	Explain the basics of n electronic communicat GSM system	number systems, logic gat tion system, AM, FM, cel	es, Boolean algebra llular concepts and	a, 2- Understand	
CO3	Apply the knowledge	Apply the knowledge of semiconductor diodes, transistors and 3-Apply			
CO4	Apply the knowledge	Apply the knowledge of number systems, logic gates and Boolean 3-Apply			
C05	algebra in realization of basic digital circuits.			4-Analyze	
	COUDSE CONTENTS				
1		COURSE CONTENT	5		
Unit I	Semiconduct	or Diodes	(08hrs)	COs Mapped CO1, CO3, CO5	
PN Junction Diode: Construction, Working and VI Characteristics Rectifiers: Working and Parameters of Half Wave Rectifier and Full Wave Rectifiers Working of Bridge Rectifier with Capacitor Filter Zener Diode: Working, VI Characteristics, Breakdown Mechanisms, Zener Diode as Voltage Regulator LED and Photodiode: Working, Characteristics and Applications					
Unit II	Transis	stors	(08hrs)	COs Mapped - CO1, CO3, CO5	
Transistors: Introduction and Types BJT: Construction, Types and Regions of Operations, CB and CE configurations with their characteristics and current relationships, BJT as Switch, DC Load Line, Voltage Divider Bias Circuit, Single Stage CE Amplifier Enhancement MOSEET: Types, Construction, Operation and Characteristics					
Unit III	Linear Integra	ted Circuits	(08hrs)	COs Mapped - CO1, CO3, CO5	
Introduct	ion to OpAmp, Ideal Differ	ential Amplifier, OpAmp	Parameters, Introd	luction to Open Loop	
and Close	ed Loop OpAmp Configura	tions, Applications of Or	Amp: Comparator,	Inverting Amplifier,	

Non-Inverting Amplifier,	Voltage Follower and	Summing Amplifier.
--------------------------	----------------------	--------------------

Unit	Digital Electronics	(08hrs)	COs Mapped -
IV			CO2, CO4, CO5

Binary, Octal, Decimal, Hexadecimal, their conversion, Binary Arithmetic, Logic Gates, Boolean Laws, De Morgan's Theorem, Half Adder, Full Adder, Flip Flops: SR, JK, D and T

Unit V	Electronic Communication Systems	(08hrs)	COs Mapped -
			CO2
Block D	iagram of Communication System, Communication	Media: Wired and	l Wireless, Modes of
Transmis	ssion, Electromagnetic Spectrum, Modulation and	It's Need, AM	and FM: Definition,
Modulati	ion Index and Bandwidth, Mobile Communication	System: Cellular	Concept and Block
Diagram	of GSM System	-	_

Text Books

1. Thomas. L. Floyd, "Electronics Devices", 9th Edition, Pearson 2. R. P. Jain, "Modern Digital Electronics", 4th Edition, Tata McGraw Hill

3. George Kennedy, "Electronic Communication Systems", 5th Edition, Tata McGraw Hill

Reference Books

1. Paul Horowitz, "The Art of Electronics", 3rd Edition, Cambridge University Press 2. Theodore S. Rappaport, "Wireless Communications: Principles and Practice", 2ndEdition,Pearson

Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation			
1	Assignment:	10		
	Assignment No. 1 - Unit 1, 2 (10 Marks)			
	Assignment No. 2 - Unit 3, 4, 5 (10 Marks)			
2	Quiz (Using Learnico):	10		
	Unit No. 1 (10 Questions - 10 Marks)			
	Unit No. 2 (10 Questions - 10 Marks)			
	Unit No. 3 (10 Questions - 10 Marks)			
	Unit No. 4 (10 Questions - 10 Marks)			
	Unit No. 5 (10 Questions - 10 Marks)			

List of Laboratory Experiments / Assignments						
Sr. No.	Sr. No. Laboratory Experiments / Assignments					
1	Build and demonstrate appropriate AC to DC converter for Mobile charger.	CO3, CO5				
	How to rectify the fault, if the output of your circuit reduces to half of the required value?					
2	Build and demonstrate a circuit to superimpose analog signal with DC signal. Hint: Television system	CO3, CO5				
3	Build and demonstrate basic charging circuit for battery of an electric vehicle.	CO3, CO5				
4	Build and demonstrate a simple circuit to control the flashing speed of LEDs used in decorative lighting system.	CO3, CO5				

5	Build and demonstrate simple circuit that will convert sine waveform	CO3, CO5		
6	Build and demonstrate a simple circuit that will turn off a water pump automatically when the water tank is full.	CO3, CO5		
7	CO4, CO5			
8	Suggest a simple electronic system for a hearing-impaired person. (Implementation is not expected)	CO3, CO4, CO5		
9	Suggest a simple system to transmit your voice signal from a recording room in Nashik to a broadcasting station in Mumbai. (Implementation is not expected)	CO3, CO4, CO5		
Guidelines for Laboratory Conduction				
1. Experiments should be performed in a group of two students only.				
2. Avoid contacting circuits with wet hands or wet materials.				
3. Double check circuits for proper connections and polarity prior to applying the power.				
4. Observ	e polarity when connecting polarized components or test equipment.			
5. Make s	sure test instruments are set for proper function and range prior to taking a	measurement.		
	Guidelines for Student's Lab Journal			
Student's lab journal should contain following related things - Title, Objectives, Hardware/ Software requirement, Theory, Circuit Diagram, Observation table, Graph Calculations, Results, Conclusion and Assignment questions				
;	Guidelines for Termwork Assessment			
1 D1. T	imply completion of experiment (10 Merice)			
1. KI: I 2 R $2 \cdot I$	Intervention of experiment (10 Marks)			
2. R2. 0 3. R3. P	resentation / clarity of journal writing (10 Marks)			
4. Total 30 marks for each experiment and average marks of all experiments will be converted				
into 25 m	into 25 marks of term work.			

F. Y. B. Tech.				
Pattern 2022 Semester: 1/11 EVE221008: Fundamentals of Machanical Engineering				
Teaching Scheme: Credit Scheme: Examination Scheme:				
eory:03hrs/week 03 Continuous Comprehensive Evaluations			e Evaluation:	
: 02hrs/week	01	20Marks		
		InSem Exam: 20Marks		
EndSem Exam: 60Marks				
		Term Work: 50 Marks		
site Courses: -				
Dutcomes: On cor	npletion of the course,	students will be able to-		
	Course Outco	mes	Bloom's Level	
Explain the basic manufacturing.	c concepts of IC engine	, thermodynamics and smart	2- Understand	
Identify various	components of electric	and hybrid vehicles.	2- Understand	
Apply the know to heat engine, h	edge of laws of thermo eat pump and refriger	dynamics and heat transfer ator.	3- Apply	
Calculate materi	al parameters for a give	en application	3- Apply	
CO5 Select a suitable power transmission element for a required		3- Apply		
application.	COURSE CO	NTENTS		
I Properties of Solid and Power Transmission Elements (08 hrs) COs Mapped – CO4, CO5				
a) Properties of Solid: Stress Tensile, Compressive and Shear Stress Strain Elasticity				
rues of Sona: Su	ess, Tensile, Compressi	ve and Shear Stress, Strain, E	lasticity,	
, Stress-Strain Dia	gram and related prope	ve and Shear Stress, Strain, E erties, Proof Stress.	lasticity,	
, Stress-Strain Dia Transmission El	gram and related prope ements: Chain drives, 7	ve and Shear Stress, Strain, E erties, Proof Stress. Types of gears and gear drives	lasticity, s, Friction	
, Stress-Strain Dia Transmission El rakes.	gram and related prope ements: Chain drives,	ve and Shear Stress, Strain, E erties, Proof Stress. Fypes of gears and gear drives	lasticity, 5, Friction	
, Stress-Strain Dia Transmission El rakes. Basics of The Heat	gram and related prope ements: Chain drives, 7 ermodynamics and a Transfer	ve and Shear Stress, Strain, E erties, Proof Stress. Types of gears and gear drives (08 hrs)	lasticity, s, Friction COs Mapped – CO3	
, Stress-Strain Dia Transmission El akes. Basics of The Heat	ermodynamics and Transfer	ve and Shear Stress, Strain, E erties, Proof Stress. Types of gears and gear drives (08 hrs) f First law to open system, ste	lasticity, , Friction COs Mapped – CO3 ady flow and	
stress-Strain Dia Transmission El akes. Basics of The Heat Law of Thermody stem. Introduction	ermodynamics and transfer mamics: Application o to Heat Engine, Heat I	ve and Shear Stress, Strain, E erties, Proof Stress. Types of gears and gear drives (08 hrs) f First law to open system, ste Pump and Refrigerator.	lasticity, s, Friction COs Mapped – CO3 ady flow and	
A stress-Strain Dia Transmission El cakes. Basics of The Heat Law of Thermody stem. Introduction aw of Thermody	ess, Tensile, Compressi gram and related prope ements: Chain drives, 7 ermodynamics and t Transfer mamics: Application o to Heat Engine, Heat I namics: Kelvin Planck	ve and Shear Stress, Strain, E erties, Proof Stress. Types of gears and gear drives (08 hrs) f First law to open system, ste Pump and Refrigerator.	lasticity, s, Friction COs Mapped – CO3 ady flow and oduction to	
A stress-Strain Dia Transmission El cakes. Basics of The Heat Law of Thermody stem. Introduction aw of Thermody eat Engine, Perpet	ermodynamics and Transfer mamics: Application o to Heat Engine, Heat I namics: Kelvin Planck ual Motion Machine (F	ve and Shear Stress, Strain, E erties, Proof Stress. Types of gears and gear drives (08 hrs) f First law to open system, ste Pump and Refrigerator. and Clausius Statement, Intro PMM) - I and II	lasticity, s, Friction COs Mapped – CO3 ady flow and oduction to	
A stress-Strain Dia Transmission El Transmission El Takes. Basics of The Heat Law of Thermody stem. Introduction Law of Thermody eat Engine, Perpet Transfer: Heat, M	ess, Tensile, Compressi gram and related prope ements: Chain drives, 7 ermodynamics and t Transfer mamics: Application o to Heat Engine, Heat I namics: Kelvin Planck ual Motion Machine (F fodes of heat transfer. L	ve and Shear Stress, Strain, E erties, Proof Stress. Types of gears and gear drives (08 hrs) f First law to open system, ste Pump and Refrigerator. and Clausius Statement, Intro PMM) - I and II .aws of Heat Transfer and app	lasticity, s, Friction COs Mapped – CO3 ady flow and oduction to lications	
Stress-Strain Dia Transmission El rakes. Basics of The Heat Law of Thermody stem. Introduction aw of Thermody eat Engine, Perpet Fransfer: Heat, M Fundamentals	ess, Tensile, Compressi gram and related prope ements: Chain drives, 7 ermodynamics and t Transfer mamics: Application o to Heat Engine, Heat I namics: Kelvin Planck ual Motion Machine (P todes of heat transfer. L s of IC Engines and	ve and Shear Stress, Strain, E erties, Proof Stress. Types of gears and gear drives (08 hrs) f First law to open system, ste Pump and Refrigerator. and Clausius Statement, Intro PMM) - I and II aws of Heat Transfer and app (08 hrs)	lasticity, s, Friction COs Mapped – CO3 ady flow and oduction to lications COs Mapped CO1 CO2	
Stress-Strain Dia Transmission El cakes. Basics of The Heat Law of Thermody stem. Introduction waw of Thermody eat Engine, Perpet Transfer: Heat, M Fundamentals Electric and	ermodynamics and transfer mamics: Application o to Heat Engine, Heat I namics: Kelvin Planck ual Motion Machine (F fodes of heat transfer. L s of IC Engines and Hybrid Vehicles	ve and Shear Stress, Strain, E erties, Proof Stress. Types of gears and gear drives (08 hrs) f First law to open system, ste Pump and Refrigerator. and Clausius Statement, Intro PMM) - I and II .aws of Heat Transfer and app (08 hrs)	lasticity, s, Friction COs Mapped – CO3 ady flow and oduction to lications COs Mapped – CO1, CO2	
Stress-Strain Dia Transmission El akes. Basics of The Heat aw of Thermody stem. Introduction aw of Thermody eat Engine, Perpet Transfer: Heat, M Fundamentals Electric and mentals of IC Er	ess, Tensile, Compressi gram and related prope ements: Chain drives, " ermodynamics and a Transfer mamics: Application o to Heat Engine, Heat I namics: Kelvin Planck ual Motion Machine (P todes of heat transfer. L s of IC Engines and Hybrid Vehicles gines: Classification of IC	ve and Shear Stress, Strain, E erties, Proof Stress. Types of gears and gear drives (08 hrs) f First law to open system, ste Pump and Refrigerator. and Clausius Statement, Intro PMM) - I and II aws of Heat Transfer and app (08 hrs) f Internal Combustion Engines Engines	lasticity, s, Friction COs Mapped – CO3 ady flow and oduction to lications COs Mapped – CO1, CO2 s, Working of	
Stress-Strain Dia Transmission El Transmission El Takes. Basics of The Heat Law of Thermody stem. Introduction aw of Thermody eat Engine, Perpet Transfer: Heat, M Fundamentals Electric and mentals of IC Er and 4-Stroke engin	ess, Tensile, Compressi gram and related prope ements: Chain drives, " ermodynamics and t Transfer mamics: Application o to Heat Engine, Heat I namics: Kelvin Planck ual Motion Machine (P lodes of heat transfer. L s of IC Engines and Hybrid Vehicles Igines: Classification of thes, Applications of IC c and Hybrid Vehicles	ve and Shear Stress, Strain, E erties, Proof Stress. Types of gears and gear drives (08 hrs) f First law to open system, ste Pump and Refrigerator. and Clausius Statement, Intro PMM) - I and II aws of Heat Transfer and app (08 hrs) f Internal Combustion Engines Engines.	lasticity, s, Friction COs Mapped – CO3 ady flow and oduction to lications COs Mapped – CO1, CO2 s, Working of Hybrid	
Stress-Strain Dia Transmission El Takes. Basics of The Heat Law of Thermody Stem. Introduction Law of Thermody eat Engine, Perpet Transfer: Heat, M Fundamentals Electric and mentals of IC Er and 4-Stroke engin uction to Electric Advantages and 1	ess, Tensile, Compressi gram and related prope ements: Chain drives, 7 ermodynamics and a Transfer mamics: Application o to Heat Engine, Heat I namics: Kelvin Planck ual Motion Machine (F todes of heat transfer. L s of IC Engines and Hybrid Vehicles ogines: Classification of hes, Applications of IC c and Hybrid Vehicles imitations of EVs and I	ve and Shear Stress, Strain, E erties, Proof Stress. Types of gears and gear drives (08 hrs) f First law to open system, ste Pump and Refrigerator. and Clausius Statement, Intro PMM) - I and II aws of Heat Transfer and app (08 hrs) f Internal Combustion Engines Engines. Components of Electric and Hybrid vehicles.	lasticity, s, Friction COs Mapped – CO3 ady flow and oduction to lications COs Mapped – CO1, CO2 s, Working of Hybrid	
	FYE221 Scheme: 3hrs/week : 02hrs/week : 02hrs/week site Courses: - outcomes: On con Explain the basic manufacturing. Identify various Apply the knowl to heat engine, h Calculate materi Select a suitable application.	FYE221008: Fundamentals of Credit Scheme: Shrs/week 03 3hrs/week 03 : 02hrs/week 01 site Courses: - - outcomes: On completion of the course, state Course Outco Explain the basic concepts of IC engine manufacturing. Identify various components of electric Apply the knowledge of laws of thermore to heat engine, heat pump and refrigerate Calculate material parameters for a give Select a suitable power transmission eleapplication. COURSE CO Properties of Solid and Power Transmission Elements	FYE221008: Fundamentals of Mechanical EngineeringScheme:Credit Scheme:Examination Scheme:3hrs/week03Continuous Comprehensiv: 02hrs/week0120MarksInSem Exam: 20MarksEndSem Exam: 20MarksEndSem Exam: 60MarksTerm Work: 50 Markssite Courses: -Term Work: 50 Marksbutcomes: On completion of the course, students will be able to-Course OutcomesExplain the basic concepts of IC engine, thermodynamics and smart manufacturing.Identify various components of electric and hybrid vehicles.Apply the knowledge of laws of thermodynamics and heat transfer to heat engine, heat pump and refrigerator.Calculate material parameters for a given applicationSelect a suitable power transmission element for a required application.COURSE CONTENTSProperties of Solid and Power Transmission Elements(08 hrs)	

Manufacturing Processes: Metal Casting, Forging, Sheet metal Working, Machining and machine tools, and Metal Joining Processes.

Unit V	Smart Manufacturing	(08 hrs)	COs Mapped
	0	· · · · · ·	- COI

a) Smart Manufacturing: Industrial automation: CNC technology, autonomous robots, Automated Guided Vehicles (AGV), Automated Storage (AS)/ Retrieval System (RS), Flexible manufacturing

b) **Manufacturing support systems:** Computer integrated manufacturing, computer aided process planning, machine vision systems for inspection, Lean and agile manufacturing, value stream mapping

Text Books
1. Iqbal Husain, "Electric and Hybrid Vehicles", CRC Press, Third Edition
2. Pravin Kumar, "Basic Mechanical Engineering", Pearson, Second Edition

Reference Books

1. Jonathan Wickert, Kemper Lewis, "An Introduction to Mechanical Engineering", Cengage Learning, Fourth Edition

2.Groover M. P. (2016) "Automation, Production Systems, Computer integrated manufacturing", Pearson

	Guidelines for Continuous Comprehensive Evaluation of Theory Course		
Sr. No.	. No. Components for Continuous Comprehensive Evaluation		
		Allotted	
	Peer Supported Independent Study (PSIS) based on one Industrial Visit		
	Number of Activities: 2		
	Mark Distribution: 5 marks for each activity		
	Student will work independently on given topic, (Topic that requires		
	analysis, application or problem solving using core concepts already		
1	covered in a class)	10	
1	Topics: Properties of Solids, Manufacturing Processes, Drives	10	
	Input resources will be provided to students		
	Students are asked to do research for latest articles; study in detail and		
	carefully observe real life applications of topic during Industrial visit		
	and present review in 5 minutes or identify/suggest applications of the		
	concept.		
2	One objective test per unit using LearniCo (Total 5 Test)	10	
2	(Each test for 10 Marks and average of 5 test will be considered)	10	

List of Laboratory Experiments / Assignments					
Sr. No.	Sr. Laboratory Experiments / Assignments No.				
1	Engine trial for measurement of fuel flow, air flow and brake power	CO1, CO3			
2	To determine thermal conductivity using Fourier's law for a simple slab	CO1, CO3			
3	Calculations of gear ratio and identifying forces on different types of gears	CO5			
4	Rockwell Hardness Test	CO4			

5	Visit to molding and casting industry		CO1, CO4		
6	6 To determine power consumption, refrigerating effect and COP of refrigerator				
7	7 Survey of electric vehicles to study its specifications				
8	8 Determination of Stiffness				
	Guidelines for Laboratory C	Conduction			
 Me Coppe Det Ind presen 	 Measurement of Hardness using Rockwell Hardness Tester for Mild Steel, Aluminium, Copper and Brass (Experiment 4) Determine stiffness of 2 mm diameter wire (Aluminium or Copper). (Experiment 8) Industrial Visit should be arranged to Molding and Casting Industry. Students will give presentation based on observations made during Industrial Visit 				
	Guidelines for Student's La	b Journal			
The St 1. The 2. App 3. Sch 4. Obs 5. San 6. Res 7. 3/4 8. Atta	 The Student's Lab Journal should contain following related to every experiment: 1. Theory related to the experiment 2. Apparatus with their detailed specifications 3. Schematic, Layout/diagram 4. Observation table 5. Sample calculations for Rockwell Hardness Test and Determination of Stiffness. 6. Result table. Graph and Conclusions 7. 3/4 questions related to the experiment 8. Attack Photo of experiment or image related to Experiment 				
	Guidelines for Termwork A	ssessment			
For ev Rubri Rubri Rubri Rubri	very Lab Assignment - c Mode of Assessment c R1 Timely Completion of Journal Writing c R2 Understanding of Experiments c R3 Presentation / Clarity of journal writing	Marks Marks 10 Marks 10 Marks 10			

F. Y. B. Tech. Pattern 2022 Semester: I/II					
T 11	FYE	221009: Engineering Mo	echani		
Teaching Scheme: Credit Scheme: Examination Scheme: Theory & O2hrs/wook 02 Continuous Comp				me:	
Practical	JOHRS/WEEK • A2brs/wook	03	Cont Evolution	inuous Comp uation: 20Ma	renensive
Tacucai	• 02111 5/ WEEK	01	InSe	m Exam: 20101	I AS Iarks
			Ends	Sem Exam: 60)Marks
Termwork: 25Ma					·ks
Prerequis	ite Courses, if any: -				
Course O	utcomes: On completion of	of the course, students wil	l be ab	ole to-	
		Course Outcomes			Bloom's Level
CO1	Select appropriate met	hod to solve problems on	rigid	bodies.	1 - Remember
CO2	Extend the concepts o	f engineering mathematic	s and	trigonometry	2 - Understanding
CO3	Construct the free boo	s. Iv diagram and correlate	active	and reactive	3 - Applying
005	forces.	ly diagram and correlate	uetrive		5 rippijing
CO4	O4 Determine centroid and moment of inertia of plane lamina.			3 - Applying	
CO5	CO5 Apply the concept of work, power, energy and impulse- 3 - App		3 - Applying		
momentum to solve engineering problems.					
COURSE CONTENTS					
Unit I	Resolution, Composition, Moment of Forces and (10hrs) CO1, Equilibrium of particle		CO1, CO2, CO3		
a) Result a	nt of force system: Basic	concepts, force system, r	esolut	ion and compo	osition of forces.
resultant o	f coplanar forces, moment	of a force, Varignon's the	eorem.	, resultant of p	arallel force
system, co	uple, equivalent force-cou	ple systems			
b) Equilit	orium: Free body diagram	, conditions of equilibriur	n for v	arious force sy	ystems, equilibrium
of two, thr	ee and more than three for	ces.		-	
Unit II	Analysis of Statically D	eterminate Beams and	russ	(7hrs)	CO1, CO2, CO3
a) Types of	of beams and types of supp	orts			
b) Reaction	ns of simple beams and re	actions of Cantilever bear	ns.		
c) Two fo	rce members, analysis of p	lane truss using method of	of joint	s and sections	
Unit III	Centroid and	Moment of Inertia		(7hrs)	CO1, CO2, CO4
a) Centre	of gravity, centre of mass	and centroid, centroid of	plane l	aminas. Area	moment of inertia.
Unit IV	F	riction		(7hrs)	CO1, CO2, CO3
a) Nature	and characteristic of friction	on, static and dynamic frie	ction, l	aws of friction	n, angle of friction,
b) Block f	riction on horizontal and in	nclined planes, wedge fric	ction. I	Ladder friction	and Belt friction.
Unit V	Kinetics(9hrs)CO1, CO2,CO3, CO5				

- a) Kinetics of rectilinear and curvilinear motion.
- b) Work-energy principle: Work, power and energy, work-energy principle.

c) Collision of elastic bodies: Impact, elastic and inelastic impact, conservation of momentum, coefficient of restitution, Impulse-momentum principle

Text Books

- 1. F. P. Beer and E. R. Johnson, "Vector Mechanics for Engineers", McGraw-Hill Publication
- 2. D.S. Kumar, "Engineering Mechanics Statics and Dynamics", S. K. Kataria and Sons Publication

Reference Books

1. S. P. Timoshenko and D. H. Young, "Engineering Mechanics", McGraw-Hill Publication

2. J. L. Meriam and Craige, "Engineering Mechanics", John Willey Publication

Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Marks Allotted		
1	LearniCo Performance – Weekly 2 lectures and min. 5 questions	5	
	in each lecture (5marks)		
2	Unit Tests with Peer Assessment - 1 st test on Unit 1 & 2, 2 nd test	15	
	on Unit 3 & 4 (15marks)		

Sr. No. Laboratory Experiments / Assignments CO Mapped 1 Determine resultant of given force system (a) Experiment on Verification of law of polygon of forces (b)Practice problems on resultant and equilibrium of forces, moment, couple. CO1, CO2, CO3 2 Curvilinear motion (a) Experiment on study of rolling motion of a sphere on a curved surface and trajectory of spinning sphere (b)Practice problems on Kinetics of curvilinear motion. CO1, CO2, CO3 3 Belt friction –	List of Laboratory Experiments / Assignments				
1 Determine resultant of given force system CO1, CO2, CO3 (a) Experiment on Verification of law of polygon of forces CO3 (b)Practice problems on resultant and equilibrium of forces, moment, couple. CO1, CO2, CO3 2 Curvilinear motion CO1, CO2, CO3 (a) Experiment on study of rolling motion of a sphere on a curved surface and trajectory of spinning sphere CO1, CO2, CO5 (b) Practice problems on Kinetics of curvilinear motion. CO1, CO2, CO3, CO4 3 Belt friction – CO1, CO2, CO3, CO4 (a) Experiment on determination of coefficient of friction of flat and v-belt CO1, CO2, CO3, CO4 (b) Practice problems on friction, centroid and moment of inertia. CO1, CO2, CO3 4 Analysis of Beams and Truss CO1, CO2, CO3 (a) Experiment on determination of support reaction of the given beam. CO1, CO2, CO3 (b) Practice problems on analysis of beams and truss. CO1, CO2, CO3 5 Study of impact CO1, CO2, CO3, CO4 (a) Experiment on Finding the coefficient of restitution for impact between two bodies CO1, CO2, CO3, CO5 (b) Practice problems on impulse – momentum principle, D'Alembert's principle and work – energy principle. CO1, CO2, CO3, CO5	Sr. No.	Laboratory Experiments / Assignments	CO Mapped		
2 Curvilinear motion CO1, CO2, (a) Experiment on study of rolling motion of a sphere on a curved surface and trajectory of spinning sphere CO5 (b)Practice problems on Kinetics of curvilinear motion. CO1, CO2, 3 Belt friction – CO1, CO2, (a)Experiment on determination of coefficient of friction of flat and v-belt CO3, CO4 (b) Practice problems on friction, centroid and moment of inertia. CO1, CO2, 4 Analysis of Beams and Truss CO1, CO2, (a) Experiment on determination of support reaction of the given beam. CO3 (b) Practice problems on analysis of beams and truss. CO1, CO2, 5 Study of impact CO3, CO4 (a)Experiment on Finding the coefficient of restitution for impact between two bodies CO1, CO2, (b) Practice problems on impulse – momentum principle, CO3, CO5	1	Determine resultant of given force system (a) Experiment on Verification of law of polygon of forces (b)Practice problems on resultant and equilibrium of forces, moment, couple.	CO1, CO2, CO3		
3 Belt friction – CO1, CO2, (a)Experiment on determination of coefficient of friction of flat and CO3, CO4 v-belt (b) Practice problems on friction, centroid and moment of inertia. CO1, CO2, 4 Analysis of Beams and Truss CO1, CO2, (a) Experiment on determination of support reaction of the given beam. CO3, CO4 (b) Practice problems on analysis of beams and truss. CO3, CO3 5 Study of impact CO1, CO2, (a) Experiment on Finding the coefficient of restitution for impact between two bodies CO1, CO2, (b) Practice problems on impulse – momentum principle, CO3, CO5 D'Alembert's principle and work – energy principle. CO1, CO2,	2	Curvilinear motion (a) Experiment on study of rolling motion of a sphere on a curved surface and trajectory of spinning sphere (b)Practice problems on Kinetics of curvilinear motion.	CO1, CO2, CO5		
 Analysis of Beams and Truss (a) Experiment on determination of support reaction of the given beam. (b) Practice problems on analysis of beams and truss. 5 Study of impact (a) Experiment on Finding the coefficient of restitution for impact between two bodies (b) Practice problems on impulse – momentum principle, D'Alembert's principle and work – energy principle. 	3	 Belt friction – (a)Experiment on determination of coefficient of friction of flat and v-belt (b) Practice problems on friction, centroid and moment of inertia. 			
 5 Study of impact (a)Experiment on Finding the coefficient of restitution for impact (b) Practice problems on impulse – momentum principle, D'Alembert's principle and work – energy principle. 	4	 Analysis of Beams and Truss (a) Experiment on determination of support reaction of the given beam. (b) Practice problems on analysis of beams and truss. 	CO1, CO2, CO3		
	 5 Study of impact (a)Experiment on Finding the coefficient of restitution for impact (b) Practice problems on impulse – momentum principle, D'Alembert's principle and work – energy principle. 				
Guidelines for Laboratory Conduction					
 Experiments should be performed in the group of 4-5 students. Practice problems should be solved in the group of 4-5 students. 					

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any. Practice problems should be written in a separate book.

Guidelines for Termwork Assessment

Practical Assessment – 30 marks each (Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation where each rubric carries ten marks.) Assessment of Practice Problems – 30 marks each Total Marks of Practical and Practice Problems will be converted to 25 Marks for Term Work.

F. Y. B. Tech. Pattern 2022 Semester: I/II FYE221010: Computational Thinking and C Programming					
Teaching Scheme: Credit Scheme: Examination Scheme:					
Theory : 02hrs/week Practical : 02hrs/week		02 01	InSem Exam: 25Marks EndSem Exam: 50Marks Termwork: 50 Marks		
Prerequ	isite Courses, if any: -				
Course	Outcomes: On completion of	of the course, students wil	l be able to-		
		Course Outcomes		Bloom's Level	
CO1	Develop algorithms an	nd flowcharts for computa	ational problems	3-Apply	
CO2	Translate an algorithm	n into a C program		2-Understand	
CO3	Build a solution for a	given problem using cont	rol structures	3-Apply	
CO4	Use arrays, structures	and files in developing p	rograms	3-Apply	
CO5	Identify logical and sy	vntactical errors		2-Understand	
CO6 Develop programs usin		ng functions		3-Apply	
	i	COURSE CONTENT	TS		
Unit I	Computational Thinking Solving	omputational Thinking (CT) and Problem06 hrsCOs Mapped - CO1			
Computational Thinking (CT): What is CT? Purpose of CT, Logical Thinking, CT and Problem Solving Strategies Program planning tools- algorithm, flowchart and pseudo code, Introduction to top-down structured programming, Types of programming languages, Introduction to System Software, Types of Program Errors: Syntax, logical, runtime, Debugging.					
Unit IIIntroduction to C Programming and Conditional Algorithmic Constructs05 hrs			COs Mapped – CO1, CO2, CO3		
Identifiers, Data Types, Variables, Constants, Input / Output, Operators(Arithmetic, relational, logical, bitwise), Expressions, Precedence and Associativity, Type conversions. Controlling algorithm execution Conditional algorithmic constructs- if, if-else, nested if-else, cascaded if-else and switch statementUnitIterative Algorithmic Constructs and Arrays06 hrsCOs Mapped –					
				CO1, CO2,CO3, CO4, CO5	

Iterative algorithm constructs: Construction of loops, Establishing initial condition, 'for', 'while', 'do-while' statements, nested loops, Continue, break statements **Arrays:** Concept, One- dimensional, multidimensional array, character arrays (Strings).

Unit	Decomposition using function	05 hrs	COs Mapped –
IV			CO1, CO2,
			CO3, CO5, CO6

Function types: Library functions (math, string), user defined functions: Function definition, function declaration, arguments, scope rules and lifetime of variables, function calls and return. **Self study:** macro

Unit V	Structures and File handling	04 hrs	COs Mapped – CO1, CO2,
			CO3, CO4, CO5

Defining a structure, accessing members, structure initialization, arrays of structures **Files:** Concept of files, records, fields, File Processing - fopen(), fclose(), fprintf(), fscanf(), getc(), putc(), closing files.

Self Study: Enum, Union

Text Books

1. Yashavant Kanetkar, "Let Us C" - Seventh Edition, BPB Publications, 2007

2. E. Balagurusamy, "Programming in ANSI C", Tata McGraw Hill, 2002

3.Karl Beecher, "Computational Thinking, A Beginner's guide to Problem solving and Programming", BCS Learning & Development Ltd, 2017

Reference Books

1.Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education, 1988

2.Computer Science: A Structured Programming Approach Using C, B.A.Forouzan and R.F. Gilberg, Third Edition, Cengage Learning.

List of Laboratory Experiments / Assignments				
Sr. No.	Laboratory Experiments / Assignments	COs Mapped		
1	Draw a flow-chart/write an algorithm/write a pseudo-code and write a C program to calculate the amount to be paid by the customer. A customer is offered $x\%$ discount on the printed price of a commodity. The customer has to pay $y\%$ sales tax on the remaining amount.	CO1, CO2, CO5		
2	Draw a flow-chart/write an algorithm/write a pseudo-code and write a C program to accept the length of three sides of a triangle from the console and to test and print the type of triangle – equilateral, isosceles, right angled, none of these.	CO1, CO2, CO3, CO5		
3	Draw a flow-chart/write an algorithm/write a pseudo-code and write a C program to store marks obtained by N students in an array and find the Minimum and Maximum score.	CO1, CO2, CO3, CO4, CO5		
4	Draw a flow-chart/write an algorithm/write a pseudo-code and write a C program to perform following string operations using library and user defined function: Find length of a string Copy a string Concatenate the string	CO1, CO2, CO3, CO4, CO5		
5	Draw a flow-chart/write a pseudo-code and write a C program that uses functions to perform the following operations: i) Addition of Two Matrices ii) Multiplication of Two Matrices	CO1, CO2, CO3, CO5, CO6		
6	Draw a flow-chart/write an algorithm/write a pseudo-code and write a C program using function to test given number as prime number and to find smallest divisor, GCD, LCM of given number	CO1, CO2, CO3, CO5, CO6		
7	Draw a flow-chart/write an algorithm/write a pseudo-code and write a C program to read structure of customer details (id, name, mobile, sex, city) and display it	CO1, CO2, CO3, CO4, CO5		
8	Write a C program to read a text file and count number of characters, words and lines	CO1, CO2, CO3, CO4, CO5		
	Guidelines for Laboratory Conduction			
Use of coding standards and Hungarian notation, proper indentation and comments. Use of open source software is to be encouraged. Operating System recommended:- Linux or its derivative Programming tools recommended: - Open Source line gcc/g++ Guidelines for Student's Lab Journal				
The laboratory assignments are to be submitted by students in the form of a journal. Journal consists of Certificate, table of contents, and handwritten write-up of each assignment (Title, problem statement, theory concepts in brief, algorithm, flowchart, test cases and conclusions). Program codes with sample outputs shall be submitted in soft form.				
Guidelines for Term work Assessment				
Continuou Assessme completic (10).	us assessment of laboratory work shall be based on overall performant of each laboratory assignment shall be based on rubrics that incl on (10), R2- understanding of assignment (10) and R3- presentation/clarity of	ce of a student. lude R1- timely of journal writing		

F. Y. B. Tech. Pattern 2022 Semester: II EVE221011: Programming in Club							
Teachin	FYE221011: Programming in C++ Teaching Scheme: Credit Scheme: Examination Scheme:						
Theory : 03hrs/week Practical : 02hrs/week		03 01	InSem Exam: 25 Marks EndSem Exam: 50 Marks Termwork: 50 Marks				
Prerequ	isite Courses, if any: Comp	outational Thinking and C P	Programming				
Course	Outcomes: On completion of	f the course, students will	ll be able to-				
		Course Outcomes		Bloom's Level			
CO1	Illustrate Object Orien various computing pro	ted Programming concep blems using C++	ots to solve	2-Understand			
CO2	Apply the concept of I	nheritance for reusability of a class		3-Apply			
CO3 Apply Polymorphism to build a solution			3-Apply				
CO4	CO4 Use template and exception handling in a given problem		ı problem	3-Apply			
CO5 Use files for developin		ig a program 3-Apply		3-Apply			
		COURSE CONTENT	' S				
Unit I	Fundamentals of Object Programming	Oriented	(7hrs)	COs Mapped – CO1			
Introduction and Need of object-oriented programming (OOP), Fundamentals: objects, classes, characteristics of OOP, Benefits of OOP, C++ as object oriented programming language. Abstraction mechanism : Classes, objects, access specifiers (private, public, protected), constructors, destructors, member data, member functions, Static members: variable and functions, inline function, friend function. Self Study : C++ as extension of C - Comments, Global scoping operator							
Unit II	Inheritance		(8hrs)	COs Mapped – CO1, CO2			
Inheritance: Class hierarchy, derived classes, types of inheritance , constructor and destructor							

Inheritance: Class hierarchy, derived classes, types of inheritance, constructor and destructor execution in inheritance, base initialization using derived class constructors, Ambiguity in Multiple Inheritance,, Virtual Base Class, Abstract class, Friend Class, Nested Class Self Study : Class hierarchy with "IS - A" and "Has-a" relationships

Unit	Polymorphism	(7hrs)	COs Mapped –
III			CO1, CO3

Introduction to Pointers: Introduction (Basic Concepts)

Polymorphism: Binding, Static binding, Dynamic binding, Static polymorphism: Function Overloading, Operator Overloading-Overloading Unary, Binary Operators.

Dynamic (Run Time) Polymorphism- Pointers to Base class, virtual function and its significance in C++, pure virtual function, abstract base class

Unit	Generic Programming and Exception handling	(7hrs)	COs Mapped –
IV			CO1,CO4

Templates- The Power of Templates, Function template, overloading Function templates, and class template, Generic Functions.

Exception handling: Fundamentals of error handling, try, catch, throw, Simple exception handling examples.

Self study : STL vector, list

Unit V	File handling	(7hrs)	COs Mapped – CO1, CO5
--------	---------------	--------	--------------------------

Data hierarchy, Stream and files, Stream Classes, Disk File I/O with Streams, File Pointers, File I/O with Member Functions.

Self Study : Formatted I/O, command line arguments

Text Books

1.Deitel, "C++ How to Program", 4th Edition, Pearson Education, ISBN:81-297-0276-2 2.Robert Lafore, "Object-Oriented Programming in C++", 4th edition, Sams Publishing, ISBN:0672323087

3.E.Balagurusamy, "Object-Oriented Programming with C++", 7th edition, McGraw-Hill Publication, ISBN 10: 9352607996

Reference Books

1. Herbert Schildt, "C++-The complete reference", 8th edition, McGraw Hill Professional, 2011, ISBN:978-00-72226805

2. Bjarne Stroustrup, "The C++ Programming Language", 4th edition, Addison-Wesley ISBN 978-0321563842. May 2013

List of Laboratory Assignments			
Sr. No.	Sr. No. Laboratory Assignments		
		Mapped	
1	Write a C++ Program to display Names, employee_id, salary of 3 employees.	CO1	
	Declare the class of employee. Create an Array of class objects. Read and		
	display the contents of the array.		
2	Write a C++ Program to Create class DM which stores the value of distances	CO1	
	in meters and centimeters. Read values for the class objects and add one		
	object of DM with another object and find greater distance from two objects.		
	Use a friend function to carry out the addition operation. The display should		
	be in the format of meters and centimeters		

3	Write a C++ program to develop a program in C++ to create a database of a	CO1		
	student's information system containing the following information: Name,			
	Roll number, Class, Division, Date of Birth and Telephone number.			
	Construct the database with suitable member functions. Make use of			
	constructor, default constructor, copy constructor, destructor, count number			
	of students			
4	Write a C++ program to create a base class Person (name and phone number).	CO1,		
	Derive Academic Performance (Degree, percentage) class from Person class.	CO2		
	Display Biodata of the person.			
5	Write a C++ program to implement a class Complex which represents the	CO1,		
	Complex Number data type. Implement the following	CO3		
	1. Constructor (including a default constructor which creates the complex $1 - 0$, 0)			
	number ()+()).			
	2. Overload operator+ to add two complex numbers.			
6	S. Overload operator to multiply two complex numbers	CO1		
0	does marketing for book and audio cossette versions. Create a class	CO1,		
	publication that stores the title (a string) and price (type float) of publications	005		
	From this class derive two classes: book which adds a page count (type int)			
	and tape which adds a playing time in minutes (type float)			
	Write a program that instantiates the book and tape class allows users to			
	enter data and displays the data members. If an exception is caught, replace			
	all the data member values with zero values. Use virtual functions			
7	Write a C++ program to Create a class template to represent generic vectors.	CO1.		
	Include following functions:	CO4		
	To create a vector, To modify the value of given vector, Multiply vector by a			
	scalar value, Display vector			
8	Write a C++ program to Create a class of employees (data members name,	CO1,		
	DOB, mobile). Write a function to accept the data and display the	CO4,		
	information. Use exception handling while accepting the data. e.g in DOB	CO5		
	day value should be in between 1 to 31, month value should be in between 1			
	to 12 etc. Store and retrieve a data from the file.			
Guidelines for Laboratory Conduction				
Use of coding standards and Hungarian notation, proper indentation and comments.				
Use of open source software is to be encouraged.				
Operating System recommended:- Linux or its derivative				
Programming tools recommended: - Open Source line g++				
Guidelines for Student's Lab Journal				
The laboratory assignments are to be submitted by students in the form of a journal. Journal consists				
of Certificate, table of contents, and handwritten write-up of each assignment (Title, problem				
statement, theory Concepts in brief, algorithm, flowchart, test cases and conclusions). Program				
codes with sample outputs shall be submitted in soft form.				
Guidelines for Term work Assessment				
Continuo	us assessment of laboratory work shall be based on overall performance of	a student.		
Assessment of each laboratory assignment shall be based on rubrics that include R1- timely				
completio	on (10), R2- understanding of assignment (10) and R3- presentation/clarity	of journal		
writing (10).				

F. Y. B. Tech.					
	Pattern 2022 Semester: I/II				
Teaching Scheme: Credit Scheme: Examination Scheme:					
Theory:01hr/week01InSem Exam: 25Marks					rks
Practica	l: 02hrs/week	01	EndSem Exam: 5	50M	larks
Tutorial	:01hr/week	01	Term Work: 25 I	Mar	·ks
			Tutorial: 25 Mar	ks	
Prerequ	isite Courses: -				
Course	Outcomes: On completion of	of the course, students will	ll be able to–		
COs		Course Outcomes			Bloom's Level
<u>CO1</u>	Explain the need of er	igineering drawing and it	s standards.		2-Understand
CO2	Interpret engineering	drawing by visualization.			2-Understand
C03	Draw projections of 2	D and 3D objects.	- 41		3-Apply
CO4	problems.	nputerized graphical tool	s to solve practical		3-Apply
		COURSE CONTENT	TS		
Unit I	Projections of a	Point and Line	(03hrs+ 2hrsTutorial)	C C	Os Mapped – O2, CO4
Projectio	ons of a point, projections of	a line located in first qua	drant only.		
Unit II	Projections of Plane (02hrs) COs Mapped – CO2, CO3, CO4				
Types of	planes, projections of plane	e inclined to both the refer	rence planes		· · ·
Unit III	Orthographic Projections(03hrs+ 2hrsTutorial)COs Mapped - CO1, CO2, CO3, CO4				
Principle projectio of simple	of projections, types of pro n, basic rules of orthograph e objects and machine eleme	jections, introduction to f ic projection, orthographi ents/parts. Applications of	first and third angle c and sectional orth f orthographic draw	met ogra ing	hods of aphic projection in industries.
Unit IV	Isometric P	rojections	(02hrs+ 2hrsTutorial)	C C	Os Mapped – O2, CO3, CO4
Introduction to isometric projection and isometric scale. Construction of isometric view from given orthographic views. Applications of isometric drawing in industries.					
Unit VProjections of Solids and Development of Lateral Surfaces of Solids(03hrs+ 4hrsTutorial)COs Mapped - CO1, CO2, CO3, CO4					
Types of solids, projection of solids resting on HP only. Methods of development: parallel line development and radial line development. Development of simple solids like cone, cylinder, prism, tetrahedron and pyramid.					
TextBooks					
1. Bhatt, N. D. and Panchal, V. M., "Engineering Drawing", Charotar Publication, Anand, India 2.Jolhe, D. A., "Engineering Drawing with introduction to AutoCAD", Tata McGraw Hill, New Delhi					

Reference Books

1. Bhatt, N. D., "Machine Drawing", Charotar Publishing house, Anand, India.

List of Tutorial Assignments (Solve assignments related to following topics by using any drafting software.)			
Sr. No. Title CO Mapp			
1	Projection of line. (One Problem)	CO2, CO4	
2	Orthographic Projection of Simple objects from given pictorial views. (One Problem)	CO1, CO2, CO3, CO4	
3	Development of 3D model from the given orthographic views. (One Problem)	CO2, CO3, CO4	
4	Projection of solids. (One Problem)	CO2, CO3, CO4	

List of Laboratory Assignments				
Sr. No.	Laboratory Assignments	CO Mapped		
1	Engineering drawing standards like types of lines, lettering and dimensioning.	CO1		
2	Projection of lines. (Two Problems)	CO2, CO4		
3	Projection of Planes.(Two Problems)	CO2, CO3, CO4		
4	Orthographic Projection of given objects including sectional view. (Two Problems)	CO1, CO2, CO3, CO4		
5	Isometric projection for the given set of two-dimensional views. (Two Problems)	CO2, CO3, CO4		
6	Projection of Solids and Development of Lateral Surfaces of solids. (One problem each)	CO1, CO2, CO3, CO4		
	Guidelines for Laboratory Conduction			
Students will solve six laboratory assignments on A2 size drawing sheet.				
Guidelines for Tutorial Conduction				
Students will solve four tutorial assignments by using any drafting software.				
Drawing limits for all drawings to be made in drafting software should be set to A2 Size.				
At the end of semester students shall submit all soft copies of all assignments to a concerned				
faculty.				
Guidelines for Termwork and Tutorial Assessment				
Each laboratory and tutorial assignments will be assessed for 30 Marks according to following				
rubrics:				
R1- Timely completion of assignments (10 Marks)				

R2- Understanding of assignment (10 Marks)

R3 – Presentation/Clarity of journal writing (10 Marks)

For all six drawing sheets total marks of 180 will be converted into 25 Marks.

For all four tutorial assignments total marks of 120 will be converted into 25 marks.

F. Y. B. Tech. Pattern 2022 Semester: I / II FYE221013: Workshop Practice				
Teaching Sc	2:			
Practical : 02 hrs/week		01	Termwork: 50Marks	
Course Outcomes: On completion of the course, students will be able to-				
	Course Outcomes 1			Bloom's Level
C01	Select appropriate machine and cutting tools for a given application			1- Remember
CO2	Describe the process and programming methods for CNC machines 2-Understand and 3D printing			
CO3	CO3 Apply the basic knowledge of Shop Floor Safety, Machine tools and 3-A Manufacturing processes.			3-Apply
CO4	Fabricate the simple mechanical parts3-Apply			

List of Laboratory Experiments / Assignments				
Sr. No.	Laboratory Experiments / Assignments	COs Mapped		
1	Workshop safety Introduction to workshop facilities, workshop safety norms.	CO3		
2	Fitting shop Preparation of simple fitting job having sawing, filing, drilling, tapping operations using different tools/equipments such as files, hammers, drills & taps, etc.	CO4		
3	Tin Smithy shop Preparation of simple sheet metal job having shearing, bending and joining operations using different tools/equipments such as hammers, mallet, stake block, snip, etc. needed for it.	CO4		
4	Carpentry Shop Preparation of simple wooden job having marking, sawing, planning, chiseling operations using different tools/equipments such as saws, Jack plane, chisel, hammer, mallet etc. needed for it.	CO4		
5	Welding Shop Demonstration of simple welding job using arc welding process.	CO1		
6	Demonstration of conventional machine Tools Demonstration of conventional machine Tools: Lathe and Milling machine	CO1		
7	Demonstration of CNC machine Tools Introduction to CNC turning, VMC, plasma arc machining, Laser cutting, CNC wood router. Detail demonstration of any one process with one programming assignment.	CO2		
8	Demonstration of 3D printing Demonstration of basic steps of 3D printing such as creating a design, exporting STL file, choosing parameters, creating G code and printing	CO2		

Guidelines for Laboratory Conduction

1. Importance of workshop practical and shop floor safety norms should be emphasized in the first practical session.

2. Students should develop one product/prototype involving operations from Practical 2 to 5.

3. Instructor should demonstrate detailed working of welding and machine tools.

4. Instructor should demonstrate one programming assignment on 3D printing and CNC machine.

Guidelines for Student's Lab Journal

1. Prepare work diary based on practical performed in workshop. Work diary consists of job drawing, operations to be performed, required raw materials, tools, equipments, date of performance with instructor signature.

2. Student has to maintain one file for write ups based on safety norms and illustrations/sketches of demonstrated parts/mechanisms/machine tools etc.

Guidelines for Termwork Assessment

Term work assessment shall be based on the timely completion of jobs, quality of job, skill acquired, completion of workshop diary and brief write-ups.

Text Books

 S. K. Hajra Choudhary, Nirjhar Roy, "Element of Workshop Technology: Vol.1 and 2", Media Promoters and Publishers Pvt. Ltd., 15th Edition, 2012
 H. S. Bawa, "Workshop Practice," Tata McGraw Hill Education (Publisher)

2. H. S. Bawa, "Workshop Practice", Tata McGraw Hill Education (Publisher)

Reference Books

John, K. C., "Mechanical Workshop Practice", Prentice Hall Publication, New Delhi
 Mikell P. Groover, "Introduction to Manufacturing Processes", Wiley Publications

F. Y. B. Tech.					
FYE221014: Communication Skills					
Feaching Scheme: Credit Scheme: Examination Scheme:					
Theory: 1hr/week Practical: 02hrs/week		01 01	Continuous Comprel Evaluation: 25Marks Termwork: 50Marks	nuous Comprehensive ation: 25Marks work: 50Marks	
Prerequisite	Courses, if any:			, 	
Course Outc	omes: On completion of	the course, students will	l be able to-		
		Course Outcomes		Bloom's Level	
C01	Develop effective com Writing and Speaking	munication skills includi	ng Listening, Reading,	3-Apply	
CO2	Practice professional et	iquette and present ones	elf confidently.	3-Apply	
CO3	Function effectively in heterogeneous teams through the knowledge of team work, Inter-personal relationships, conflict management and leadership quality.			3-Apply	
CO4	Evaluate oneself by performing SWOC Analysis to introspect about 4-Evaluate individual's goals and aspirations.				
CO5 Constructively participate in group discussion, meetings and prepare and deliver Presentations.			4-Evaluate		
		Text Books			
 Gajendra Singh Chauhan, Sangeeta Sharma, "Soft Skills – An Integrated Approach to Maximize Personality", Wiley India, ISBN:13:9788126556397 Simon Sweeney, "English for Business Communication", Cambridge University Press, ISBN 13:978-0521754507 					
		Reference Books			
 Indrajit Bhattacharya, "An Approach to Communication Skills", Delhi, Dhanpat Rai, 2008 Sanjay Kumar and Pushpa Lata, "Communication Skills", Oxford University Press, ISBN 10:9780199457069 Business Communication & Soft Skills, McGraw Hill Education. Atkinson and Hilgard, "Introduction to Psychology", 14th Edition, Geoffrey Loftus, ISBN-10:0155050699, 2003. Kenneth G. Mcgee, "Heads Up: How to Anticipate Business Surprises & Seize Opportunities First", Harvard Business School Press, Boston, Massachusetts, 2004, ISBN 10:1591392993 Krishnaswami, N. and Sriraman T., "Creative English for Communication," Macmillan 					

List of Laboratory Experiments / Class Assignments				
Sr. No.	Laboratory Experiments / Class Assignments	COs		
		Mapped		
1	English Language Basics – Class Assignments	CO1		
	Fundamentals of English grammar, Vocabulary Building, Developing basic			
	writing skills and Identifying Common Errors in Writing			

2	Listening and Reading Skills	CO1
	a. Listening Worksheets using Language Lab Software	
	Each student will be given specifically designed worksheets that contain	
	blanks / matching / MCQs that are designed to an audio (chosen by the	
	faculty). Students have to listen to the audio (only once) and complete the	
	worksheet as the audio plays. This will help reiterate active listening as well as	
	deriving information (listening to information between the lines)	
	b. Reading Comprehension Worksheets to be distributed/displayed to students.	
	– Class Assignments	
	Teacher will choose reading passages from non-technical domains, design	
	worksheets with questions for students to answer. This will enhance student's	
	reading skills by learning how to skim and scan for information.	
3	Writing Skills	CO1
	a. Letter / Email Writing – Lab Experiment	
	After explaining to the students the highlights of effective writing, students	
	can be asked to write (using digital platforms / paper-based) letter to an	
	organization with the following subject matter,	
	i. Requesting opportunity to present his/her product.	
	ii. Complaining about a faulty product / service.	
	iii. Apologizing on behalf of one's team for the error that occurred.	
	iv. Providing explanation for a false accusation by a client.	
	h Alexand Witten Class Assistances	
	D. Adstract writing – Class Assignment	
	reacher will choose a newspaper article / short stories and ask students to	
1	Speaking Skills (One) Communication Dart A	CO5
4	Speaking Skins / Oral Communication – Part A	COS,
	a. One minute Sen introduction – Class Assignment	02
	explain now to introduce oneself in a professional manner and presenting	
	Associations Personal Information (hobbies family social)	
	b Presentations – I ab Evneriment	
	Every student will have to choose a tonic of his/her choice and make a 5-	
	minute presentation using audio-video aids / PPT Every student will make	
	two presentations on _ one technical and other non-technical tonic Focus and	
	evaluation of each presentation should be the depth of knowledge about the	
	tonic originality of perspective on the tonic well-researched or not verbal	
	and non-verbal skills and ability to answer questions effectively. Plagiarism	
	should be discredit and students should be instructed about it.	
5	Speaking Skills / Oral Communication – Part B	CO1.
	a. Group Discussion – Lab Experiment / Class Assignment	CO5.
	The class will be divided into groups of 5-6 students for a discussion lasting	CO2.
	15 minutes. Topics should be provided by teachers. After each group finishes	CO3
	its discussion, the teacher will give critical feedback including areas of	
	improvement. The teacher should act as a moderator / observer only	
6	Extempore	CO1,
	Various topics will be laid out in front of the audience and each student is to	CO2
	pick one topic and speak about the topic for 5 minutes followed by Q&A from	
	audience. Teacher will evaluate each student based on thinking ability,	
	content, communication skills, logical and cohesive presentation of topic,	
	perspective of student, ability to handle questions and respond positively	
7	SWOC Analysis	CO4
	a. Focus on introspection and become aware of one's Strengths, Weakness,	

Opportunities and Challenges. Students can write down their SWOC in a matrix and the teacher can discuss the gist personally. **b. Resume Writing**The teacher should conduct a brief session outlining the importance of a CV / Resume and students can write / type out their own resumes

Share various professional formats.
Focus on highlighting individual strengths.
Develop personalized professional goals / statement at the beginning of the resume.

Guidelines for Laboratory Conduction

The teacher may design specific assignments that can highlight the learning outcomes of each unit. Each activity conducted in the lab should begin with a brief introduction of the topic, purpose of the activity from a professional point of view and end with the learning outcomes as feedback from students. Most of the lab sessions can be designed to be inclusive; allowing students to learn skills experientially; which will benefit them in the professional environment. Every student must be given sufficient opportunity to participate in each activity and constructive feedback from the instructor / facilitator at the end of the activity should learn towards encouraging students to work on improving their skills. Activities should be designed to cater to enhancement of multiple skills – e.g. Team Building Activity can highlight 'open communication', 'group discussion', 'respecting perspectives', 'leadership skills', 'focus on goals' which can help students improve their inherent interpersonal skills.

At least one session should be dedicated to an interactive session that will be delivered by an expert from the industry; giving the students an exposure to professional expectations.

Guidelines for Student's Lab Journal

Each student should have a Lab Workbook (sample workbook attached) which outlines each lab activity conducted. The student must respond by writing out their learning outcomes and elaborating the activities performed in the lab., group discussion, group exercises and interpersonal skills and similar other activities/assignments.

Guidelines for Term work Assessment

Continuous Assessment of laboratory work is to be done based on overall performance and lab assignments and performance of student. Each lab assignment assessment will be assigned grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, punctuality, neatness, enthusiasm, participation and contribution in various activities-SWOC analysis, presentations, team activity, event management

F. Y. B. Tech. Pattern 2022 Semester: II FYE221015: Engineering Explorations					
Teaching Scheme: Credit Scheme: Examination Scheme:					
Practical : 02	Practical : 02hrs/week 01 Term Work: 100Ma			arks	
Prerequisite	Courses, if any:				
Course Out	comes: On completion	of the course, students v	vill be able to-		
		Course Outcomes		Bloom's Level	
CO1	Apply principles from several disciplines.			3-Apply	
CO2	Demonstrate long-term retention of knowledge and skills acquired.			3-Apply	
CO3 Function effectively as a team to accomplish a desired goal.			3-Apply		
CO4	Explore an Engineering Product and prepare its Mind map			4-Analysis	
CO5	Enhance their learning ability to solve practical problems.4-Synthesis				

Preamble

Experiential learning involves a number of steps that offer student a hands-on, collaborative and reflective learning experience which helps them to "fully learn new skills and knowledge". During each step of the experience, students will engage with the content, the instructor, each other as well as self–reflect and apply what they have learned in another situation.

Students undergo the Experiential Learning through following phases of Engineering Exploration, Engineering Design and Product Realization. Students will undertake mini projects to acquaint with knowledge in the various domains of Engineering.

The course introduces students to analyzing, designing, developing, testing, report writing and project presentations that demonstrate understanding. Students will be asked to observe, document, raise questions and draw conclusions. Teachers rely on a variety of resources to enrich students' studies that may include meeting experts and hands-on experimentation.

Reference Books

1. Project-Based Learning, Edutopia, March 14, 2016.

2. What is PBL? Buck Institute for Education.

Guidelines for Course Conduction

- There should be a group of 4-5 students.
- Groups will be monitored by the Course teacher.
- Following two assignments will be completed by all groups

A) Exploration of an Engineering product like Electronic Voting Machine, Car, Mobile handset, Elevator / Escalator, Operation Table, Solar water heater. The exploration will be based on working principle, specifications, material used, manufacturing process, technology used, operations (observable and controllable), ergonomics, extent of automation, safety features, environmental issues, maintenance and costing.

B) Teachers will identify 12-15 mini project ideas.

- Every group will undertake a mini project in consultation with the Course teacher.
- Project ideas will be common to all first year divisions but the implementation might be different.
- The students will plan, manage and complete the associated tasks.

Guidelines for Course Completion

Students will present/submit the Mind Map of the Engineering product chosen for exploration. Students will exhibit/demonstrate the completed project at the end of the semester along with a brief report in a recommended format as term work submission.

Guidelines for Term work Assessment

The Course teacher is committed to assess and evaluate the students' performance. Progress of work done will be monitored on weekly basis.

During process of monitoring and continuous assessment, the individual and team performance is to be measured.

- Individual assessment for each student should be based on understanding individual capacity, role and involvement in the Engineering Product Exploration/project.
- Group assessment should be based on roles defined, distribution of work, intra-team communication and togetherness.
- Documentation and Demonstration.

It is recommended that all activities are to be recorded regularly and proper documents are to be maintained by both students as well as the course teacher.

Continuous Assessment Sheet (CAS) is to be maintained by the Course teacher.

- A) Recommended parameters for assessment of Engineering Product Exploration: (25marks) Working principle, specifications, material used, manufacturing process, technology used, operations (observable and controllable), ergonomics, extent of automation, safety features, environmental issues, maintenance and costing.
- B) Recommended parameters for assessment of Project: (25marks)
 - Outcomes of Mini Project / Problem Solving Skills / Solution provided / Final product (50%) (Individual assessment and team assessment)
 - Documentation (Gathering requirements, design & modeling, implementation/execution, use of technology and final report, other documents) (25%)
 - Demonstration (Presentation, User Interface, Usability, Participation in Exhibition/Contest etc) (15%)
 - Awareness / Consideration of Environmental / Social / Ethical / Safety / Legal aspects (10%)

] FYE22016:	F. Y. B. Tech. Pattern 2022 Semeste Democracy, Election	r: I/II and Governance			
Teaching Scheme: Credit Schem			Examination Sc	heme:		
Theory : 02hrs/week		02	InSem Exam: 25Marks EndSem Exam: 25Marks			
Prerequisi	ite Courses, if any:					
Course Ou	itcomes: On completion o	f the course, students wi	ill be able to-			
		Course Outcomes		Bloom's Level		
CO1	Understand and practi	ce key principles of Der	nocracy	2-Understand		
CO2	Identify how different	rights are protected in I	Democratic systems	ems 2-Understand		
CO3	3 Understand various approaches for Governance			2-Understand		
CO4	CO4 Reflect on the various threats and challenges to D			3-Apply		
	·	COURSE CONTEN	TS	·		
Unit I	Democracy- Foundation and Dimensions (8hrs) COs Mappe CO1, CO2, C		COs Mapped – CO1, CO2,CO4			
Constitution Economic	on of India, Evolution of D , and Political	emocracy- Different M	odels, Dimensions	of Democracy- Social,		
Unit II	Decentra	lization	(8hrs) COs Mapped – CO1, CO2,CO3, CO4			
Indian tradition of decentralization, History of Panchayat Raj institution in the lost independence period 73 rd and 74 th amendments, Challenges of caste, gender, class, democracy and ethnicity						
Unit III	Gover	nance	(8hrs)	COs Mapped – CO2, CO3, CO4		
Meaning and concepts, Government and governance, Inclusion and exclusion						
Text Books						
 Basu, D. D. (1982), "Introduction to the Constitution of India", Prentice Hall of India. Chandra, B. (1999), "Essays on contemporary India", Har-Anand Publications. 						